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Chapter 1

Introduction

1.1 Why QFT?

Q. What is QFT?

A. It is a universal framework to describe quantum many-body physics:

A practical method to describe many-body physics is the occupation number representa-
tion, which is namely the second quantization formalism. In the canonical quantization
formalism, the field operator is constructed as superposition of (infinitely) many creation
and annihilation operators.

Q. What does the universality mean?

A. The idea of the universality is as follows:

We are interested in various kinds of many-body interacting systems of elementary parti-
cles (quarks, electrons), nucleons, quasi-particles, macroscopic particles, etc. They actually
have different microscopic description (Hamiltonian, Lagrangian), depending on a lot of
parameters, e.g., mass parameters, coupling constants. However, in the low-energy regime,
we may apply a unified description with very few parameters: Most of the microscopic
parameters become irrelevant in that situation.:

Q. What is the unified description then?

A. It is sometimes called the (low-energy) effective theory [Wei79]:

In general, one can consider various forms of the interaction terms in the Hamiltonian or the
Lagrangian. It is also possible to include derivatives, which are converted to multiplication
of the momentum p. In the low-energy regime, we may put p� 1, so that we do not need
to consider the higher derivative terms. Similarly, imposing a symmetry to the system,
it also provides restrictions on the possible interactions. In this way, we may consider
the effective field theory in the low-energy regime, which consists only of the appropriate
degrees of freedom.
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1.2 References

There are a lot of nice textbooks of QFT. Here is an incomplete list:

[Sre07] M. Srednicki, Quantum Field Theory, Cambridge Univ. Press, 2007.

[Nai05] V. P. Nair, Quantum field theory: A modern perspective,
Graduate Texts in Contemporary Physics, Springer-Verlag, 2005.

[Zee03] A. Zee, Quantum field theory in a nutshell, Princeton Univers. Press, 2003.

[Ryd96] L. H. Ryder, Quantum Field Theory, Cambridge University Press, 1996.

[Wei95] S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, 1995.

[PS95] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory,
Addison-Wesley, Reading, USA, 1995.

[IZ80] C. Itzykson and J. B. Zuber, Quantum Field Theory,
International Series In Pure and Applied Physics, McGraw-Hill, New York, 1980.

1.3 Scalar field on a lattice

Let us demonstrate the idea of effective theory with an example, called the scalar field model
on a lattice.1 We define the scalar field defined on a D-dimensional lattice ΛD,2

φ(x) ∈ R , x = (x1, . . . , xD) ∈ ΛD ⊂ RD . (1.3.1)

Namely, the scalar field is interpreted as a map, φ : ΛD → R. See Sec. 2.1.1 for the definition of
the field in general.

Let a ∈ R≥0 be the lattice spacing, then we may write x = a · n ∈ ΛD where n =

(n1, . . . , nD) ∈ ZD. We impose the periodic boundary condition

xµ ' xµ + L = xµ + aN , L ∈ R>0, N ∈ Z>0 , (1.3.2)

and thus the D-dimensional volume of the system is given by

vol ΛD = LD = aDND . (1.3.3)

We consider the following Hamiltonian of the system:

H =
∑
x∈ΛD

m2
0 φ(x)

2 + t

D∑
µ=1

φ(x+ aµ̂)φ(x) +

∞∑
k=2

λ2k φ(x)
2k

 , (1.3.4)

=: H0 +Hint (1.3.5)

where we call the quadratic terms of the scalar field φ(x) the free part H0, consisting of the
(bare) mass term m2

0 φ(x)
2 and the hopping term φ(x + aµ̂)φ(x), with the hopping parameter

1One may refer to the textbooks about QFT on a lattice for details [Cre85, Rot12, Cre18].
2We can similarly discuss the complex scalar field φ(x) ∈ C, and also the multi-component field φ(x) ∈ Rn,

Cn.
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t ∈ R. We denote the unit vector in µ-direction by µ̂, so that the hopping term describes the
nearest-neighbor propagation of the scalar field. The remaining terms are called the interaction
part Hint. Although we formally consider infinitely many coupling constants (λ2k)k≥1,3 we
typically consider finite number of the couplings in many cases.

1.3.1 Continuum limit a → 0

Given such a lattice system, we are interested in the continuum limit, a → 0, where we expect
the universal behavior.

a
a

(1.3.6)

First of all, in this limit, the summation over the lattice is replaced with the integral:∑
x∈ΛD

aD −→
∫

dDx . (1.3.7)

The factor aD corresponds to the volume element of the present case,
∑
x∈ΛD

aD = volΛD. In

order to extract this volume factor, we should rescale the field and the parameters. For example,
the mass term is rewritten as4

m2
0 φ(x)

2 = aD
(m0

a

)2( φ(x)

aD/2−1

)2

, (1.3.8)

so that we rescale the variables,

m0

a
−→ m0 ,

φ(x)

aD/2−1
−→ φ(x) , (1.3.9)

Namely, they have the following mass dimensions:

[m0] = 1 , [φ] =
D

2
− 1 . (1.3.10)

From this point of view, if the parameter has a negative dimension, it does not contribute to
the Hamiltonian (Lagrangian) in the continuum limit a → 0, which is called irrelevant. On
the other hand, it is called relevant/marginal if it has positive/zero dimension. We remark
[φ] ≥ 0 for D ≥ 2.

3For the moment, we do not consider the odd-power terms λ2k+1φ(x)
2k+1, which are not invariant under the

transformation φ(x) → −φ(x). This is interpreted as the action of O(1) = {±1} = Z2. For the case of the complex
scalar field, we similarly consider the Hamiltonian (Lagrangian), which is invariant under the U(1) transform (the
phase rotation).

4This behavior is detemined to be consistent with the later argument.
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1.3.2 Quadratic part

We apply the Taylor expansion to the kinetic term:

φ(x+ aµ̂) =
∞∑
n=0

an

n!
∂nµφ(x) , (1.3.11)

where we denote the partial derivative by ∂nµ =
∂n

∂xnµ
. The quadratic part of the Hamiltonian is

expanded by the lattice spacing a with the rescaled variables (1.3.9) as follows:

H0 =
∑
x∈ΛD

aD

(m2
0 +D

t

a2
)φ(x)2 + t

D∑
µ=1

(
a−1 ∂µφ(x)φ(x) +

1

2
∂2µφ(x)φ(x)

)
+O(a)

 .
(1.3.12)

We remark that the O(a−1) term does not contribute to the Hamiltonian since it is written
as the total derivative, ∂µφ(x)φ(x) = 1

2∂µ(φ(x)
2), and thus

∫
dxD ∂µ(φ(x)

2) = 0 (Recall that
we are now considering the periodic boundary condition; no boundary). Then, taking the
continuum limit a → 0, we can omit the irrelevant terms in O(a), and obtain the following
effective Hamiltonian:

lim
a→0

H0 =

∫
dDx

[
m2φ(x)2 +

1

2
∂2µφ(x)φ(x)

]
=

∫
dDx

[
m2φ(x)2 − 1

2
∂µφ(x)∂µφ(x)

]
(1.3.13)

where we put t = 1 for simplicity, and the new mass parameter is defined as5

m2 = m2
0 +

D

a2
. (1.3.14)

We again apply the integration by parts to obtain the second expression, ∂2µφ(x)φ(x) = ∂µ(∂µφ(x)φ(x))−
∂µφ(x)∂µφ(x).

1.3.3 Interaction part

Let us apply the same argument for the interaction part Hint. We rewrite

λ2kφ(x)
2k = aD

λ2k
aD−2k(D/2−1)

φ(x)2k

a2k(D/2−1)
(1.3.15)

then the coupling constant is rescaled as

λk
aD−k(D/2−1)

−→ λk , [λk] = D − k

(
D

2
− 1

)
. (1.3.16)

Now the dimension of the coupling constant can be both positive and negative, depending on
the dimension D. Let us examine it in details.

D = 2

In this case, the scalar field is dimensionless, [φ] = 0, and the coupling dimension does
not depend on k, [λk] = 2 (= D). Therefore, all the couplings are relevant, and we can
consider various non-linear models in D = 2. See Sec. 2.4.4.

5Naively thinking, this new mass parameter involves a divergence due to the factor D/a2 in the limit a → 0.
The idea of the renormalization is that such a divergence is cancelled with the bare mass m0, so that the new
parameter m could be finite. See Chapter 4 for details.
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D = 3

The scalar field has the dimension [φ] = 1/2, so that [λk] = 3 − k/2, which becomes
non-negative only for k ≤ 6. For k > 6, the coupling becomes irrelevant.

D = 4

In this case, the coupling at k = 4 is marginal, and the others are irrelevant.

D ≥ 5

All the couplings k ≥ 4 are irrelevant, so that we cannot consider the interacting field
theory in the continuum limit.6

This argument says that, even if you start with the microscopic model with a lot of parame-
ters, most of them become irrelevant which do not contribute in the continuum limit a→ 0. So,
we can focus on the effective theory with a few relevant and marginal parameters. This is basi-
cally the idea of renormalization group, which will be discussed in Sec. 4.3. In this context,
the relevant/irrelevant operators are called the renormalizable/non-renormalizable operators.

Exercise 1.1. Consider the higher (next-nearest neighbor) hopping term, and the interaction
term with a hopping,

∑
1≤µ<ν≤D

φ(x+ a(µ̂+ ν̂))φ(x) ,

D∑
µ=1

φ(x+ aµ̂)φ(x)3 , (1.3.17)

then derive the effective Hamiltonian in the continuum limit a→ 0.

Exercise 1.2. Consider the complex scalar system on the lattice, φ(x) ∈ C, with the Hamilto-
nian,

H =
∑
x∈ΛD

m2
0 |φ(x)|2 +

t

2

D∑
µ=1

(
φ(x+ aµ̂)†φ(x) + φ(x)†φ(x+ aµ̂)

)
+

∞∑
k=2

λ2k|φ(x)|2k
 ,

(1.3.18)

then derive the effective Hamiltonian in the continuum limit a→ 0.

6For D = 5, 6, the coupling becomes relevant and marginal at k = 3. Hence, one can consider an interacting
scalar theory having the cubic term φ(x)3.

5



Chapter 2

Symmetry and fields

In this Chapter, we start to discuss the Lorentz symmetry, which is an important symmetry for
relativistic field theory. We then introduce the Lagrangian formalism, and discuss various field
theories and their symmetries within the classical theory.

2.1 Lorentz symmetry

We consider the Lorentz symmetry, which is a fundamental symmetry of the relativistic field
theory. In this note, we use the following convention for the d = D + 1 dimensional Lorentzian
spacetime metric

ηµν = diag(+1,−1, . . . ,−1︸ ︷︷ ︸
D

) . (2.1.1)

The manifold with this metric signature is called the Lorentzian manifold, which is a special
case of the pseudo-Riemannian manifold with the signature (+1, . . . ,+1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

). In the

case with q = 0, it is called the Riemannian manifold. For the moment, we focus on the case
(p, q) = (1, D), which is the most relevant situation in the relativistic field theory.

We introduce the following convention for the vectors:

aµ = (a0, a1, . . . , aD) , aµ = ηµνa
ν = (a0,−a1, . . . ,−aD) . (2.1.2)

The inner product of the vectors is written using the metric as follows:

a · b = aµb
µ = ηµνa

µbν = ηµνaµbν . (2.1.3)

Let us consider the behavior under the transformation (a map Λ : R1,D → R1,D),

Λ : xµ 7−→ Λµνx
ν , (2.1.4)

with

x · x = xµx
µ = ηµνx

µxν
Λ7−→ ηµνΛ

µ
ρΛ

ν
σx

ρxσ . (2.1.5)

If the norm is invariant under the transform, we obtain

ηµνΛ
µ
ρΛ

ν
σ = ηρσ ⇐⇒ Λ τ

ν Λνσ = δτσ

⇐⇒ Λ τ
ν = (Λ−1)τν = ητσ(Λ−1) ρσ ηρν ⇐⇒ ΛT = ηΛ−1η . (2.1.6)
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Therefore, Λµν is an element of the orthogonal group O(1, D), which is known as the Lorentz
group for d = D + 1 dimensional spacetime. It is also convenient to use the matrix notation to
consider the inner product,

a · b = (a0, a1, . . . , aD)
(
η
)

b0

...
bD

 = tr

η

b0

...
bD

 (a0, a1, . . . , aD)

 , (2.1.7)

which is analogous to the cyclic property of the trace. In this notation, the Lorentz transforma-
tion of the norm behaves as

(Λx) · (Λx) = tr

ηΛ

x0

...
xD

 (x0, x1, . . . , xD)ΛT

 = tr

ΛTηΛ


x0

...
xD

 (x0, x1, . . . , xD)

 .
(2.1.8)

Hence, we obtain the condition, η = ΛTηΛ ⇐⇒ ΛT = ηΛ−1η.

There are four connected parts for O(1, D), which are related through the parity and the time-
reversal operations, P = diag(+1,−1, . . . ,−1), and T = diag(−1,+1, . . . ,+1).1 The connected
part, which contains the identity 1 = diag(+1, . . . ,+1), is called the restricted Lorentz group
denoted by SO+(1, D) or simply SO(1, D) if no confusion.

Exercise 2.1 (Isomorphisms of the spin group). The double cover of SO(n) is called the spin
group denoted by Spin(n). Show the following isomorphisms for the spin group:

Spin(1, 1) = GL(1,R) , Spin(1, 2) = SL(2,R) , Spin(1, 3) = SL(2,C) . (2.1.9)

Then, discuss the isofmorphism by taking the Z2-quotient

SO+(1, 3) = PSL(2,C) = SL(2,C)/Z2 with Z2 = {±1} . (2.1.10)

2.1.1 Representation and fields

Let ϕ(x) ∈ V be a field taking a value in the vector space V , e.g., V = Rn, Cn. Namely, the
field defines a map ϕ : M −→ V , where M is a (base) manifold on which the field is defined,
e.g., M = R1,D. Under the Lorentz transformation

x′µ = Λµνx
ν , Λ ∈ SO(1, D) , (2.1.11)

the field ϕ(x) transforms as follows in general:

ϕ′
i(x

′) = ρ(Λ) ji ϕj(x) , (2.1.12)

where ρ(Λ) ∈ GL(V ) (e.g., GL(n,C) for V = Cn) obeying the relation,

ρ(Λ1Λ2) = ρ(Λ1)ρ(Λ2) for ∀Λ1,Λ2 ∈ SO(1, D) . (2.1.13)

In other words, it provides a map ρ : SO(1, D) → GL(V ), which defines the representation of
the Lorentz group. The vector space V is called the representation space in this context (and
also the target space. See Sec. 2.4.4). From this point of view, we can classify the fields based
on the representation theory of the Lorentz group.

1In fact, the parity matrix P coincides with the Lorentzian metric η under the notation η = (+ − −−).
Therefore, the relation discussed in (2.1.6) is understood as Λ−1 = ηΛTη = PΛTP. Under the different notation
η = (−+++), the Lorentz metric coincides with T.
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d = 3 + 1

Let us focus on an important example, d = 3 + 1. In this case, the Lorentz group is given
by SO(1, 3), which is isomorphic to PSL(2,C). The Lorentz group SO(1, 3) is generated by(
4

2

)
= 6 “rotations” (Mµν)µ,ν=0,...,3, which are antisymmetric Mµν = −Mνµ, and split into

three spatial rotations J = (Ji =
1
2εijkM

jk)i=1,2,3 and three temporal ones, called the boosts
K = (Ki =Mi0 = −M0i)i=1,2,3.

In order to see the underlying algebraic structure, we consider the infinitesimal version of
the Lorentz transformation with the generators,

Λµν = exp

(
− i

2
ερσMρσ

)µ
ν

= δµν −
i

2
ερσ(Mρσ)

µ
ν +O(ε2) , (2.1.14)

with the rank 2 antisymmetric tensor ερσ = −εσρ. Identifying this with δµν + εµν , we obtain

(Mρσ)
µ
ν = i

(
δµρ ησν − δµσηρν

)
, (2.1.15)

which obeys the commutation relation

[Mµν ,Mρσ] = −i(ηµρMνσ − ηνρMµσ − ηµσMνρ + ηνσMµρ) . (2.1.16)

From this relation, we obtain

[Ji, Jj ] = iεijkJk , [Ji,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkJk (2.1.17)

Combining them as

A =
1

2
(J + iK) , B =

1

2
(J − iK) , (2.1.18)

we see that A = (Ai)i=1,2,3 and B = (Bi)i=1,2,3 separately obey the commutation relations of
the Lie algebra su(2), whose complexification provides su(2)C = sl(2,C),

[Ai, Aj ] = iεijkAk , [Bi, Bj ] = iεijkBk , [Ai, Bj ] = 0 . (2.1.19)

This implies that the representation of the Lorentz group is characterized by that of su(2)⊕su(2)

labeled by a pair of half-integers, (n,m) ∈ Z/2⊕Z/2. Here, the dimension of the representation
(n,m) coincides with that for the representation space V , dimV = (2n + 1)(2m + 1), and the
quantity s = n+m is called the spin. We show several examples in the following:

Field Representation Dimension Spin

scalar (0,0) 1 0

spinor (12 , 0)⊕ (0, 12) 2 + 2 1
2

vector (12 ,
1
2) 4 1

((anti-)selfdual) tensor (1, 0)⊕ (0, 1) 3 + 3 1

(2.1.20)

It is also possible to consider higher-spin fields, Rarita–Schwinger field and gravitino for spin-32 ,
and graviton for spin-2. It is known that the bosonic/fermionic field has integer/half-integer
spin (a.k.a., the spin-statistics theorem).
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Spinor field

Let us discuss the spinor field in details. For example, the (0, 12)-representation of the Lorentz
group, corresponding to the two-dimensional representation of sl(2,C) denoted by 2-representation,
is given as follows:2

2 =

(
0,

1

2

)
: ρ(Ai) = 0 , ρ(Bi) =

1

2
σi , V = C2 , (2.1.21)

where (σi)i=1,2,3 are the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.1.22)

Namely, we have ρ(Ji) = 1
2σi, ρ(Ki) =

i
2σi for the 2-representation. The other representation

(12 , 0) is given by the complex conjugation, denoted by the 2∗-representation, as ρ(Ji) = 1
2σ

∗
i ,

ρ(Ki) = − i
2σ

∗
i , so that we have

2∗ =

(
1

2
, 0

)
: ρ(Ai) =

1

2
σ∗i , ρ(Bi) = 0 , V = C2 . (2.1.23)

We denote the spinor fields associated with the representations, 2 and 2∗, by ξ = (ξα)α=1,2 ∈ V

and η = (ηα̇)α̇=1,2 ∈ V . We here distinguish the indices α and α̇ associated with 2 and 2∗.

The contraction of the indices is taken with the invariant tensor of SL(2,C),

εαβ = εα̇β̇ = εαβ = εα̇β̇ = iσ2 =

(
0 1

−1 0

)
. (2.1.24)

For example, the Lorentz scalar is given by

εαβξβηα = ξαηα = −ξβηβ , εα̇β̇ξβ̇ηα̇ = ξα̇ηα̇ = −ξβ̇η
β̇ . (2.1.25)

We remark εT = ε−1 = −ε. Then, the vector is constructed by 2 and 2∗ as follows:

Xµ = ξα(σµ)αβ̇η
β̇ (2.1.26)

where we define

(σµ)αβ̇ = (1, σi=1,2,3)αβ̇ , (σ̄µ)
α̇β = (1,−σi=1,2,3)

α̇β . (2.1.27)

Using the Pauli matrices, it is possible to convert the vector to the mixed-spinor,

Xµ(σµ)αβ̇ =: Xαβ̇ . (2.1.28)

We also define

(σµν) βα =
i

2
(σµσ̄ν − σν σ̄µ) βα , (σ̄µν)α̇

β̇
=

i

2
(σ̄µσν − σ̄νσµ)α̇

β̇
, (2.1.29)

2We again remark that A and B obey su(2) Lie algebra relation (2.1.19), and thus ρ(A) and ρ(B) are now
representations of su(2) Lie algebra. Hence, they correspond to the trivial representation UA = exp

(
iεiρ(Ai)

)
= 1

and the two-dimensional representation UB = exp
(
iεiρ(Bi)

)
of SU(2). In fact, although SL(2) and SU(2) are

different Lie groups, finite dimensional irreducible representations of SL(2) are equivalent to unitary irreducible
representations of SU(2) (unitarian trick).

9



which are (anti-)selfdual tensors,

σµν = +
i

2
εµνρσσρσ , σ̄µν = − i

2
εµνρσσ̄ρσ . (2.1.30)

We remark that any anti-symmetric tensor (six components) splits into selfdual and anti-selfdual
tensors (three components for each).

These constructions are based on the tensor product of 2 and 2∗ representations,

2 ⊗ 2 =

(
0,

1

2

)
⊗
(
0,

1

2

)
= (0, 0)⊕ (0, 1) , (2.1.31a)

2∗ ⊗ 2∗ =

(
1

2
, 0

)
⊗
(
1

2
, 0

)
= (0, 0)⊕ (1, 0) , (2.1.31b)

2 ⊗ 2∗ =

(
0,

1

2

)
⊗
(
1

2
, 0

)
=

(
1

2
,
1

2

)
. (2.1.31c)

See also the table of the Lorentz group representations (2.1.20).

2.2 Lagrangian formalism

Let us introduce the Lagrangian formalism for field theories. We here consider the Lagrangian
with the following conditions:

1. Locality

The action S is given by the integral of the Lagrangian density which consists of the field
ϕ(x) and its derivatives ∂ϕ(x),

S[ϕ] =

∫
dt

∫
dDxL (ϕ(x), ∂ϕ(x)) =

∫
ddxL (ϕ(x), ∂ϕ(x)) , (2.2.1)

where d = D + 1 is the spacetime dimension.

2. Unitarity

The Lagrangian density is a real number in the classical theory, and a hermitian operator
in the quantum theory, to guarantee the probability conservation.

3. Poincaré invariance

The Lagrangian density is invariant under the Lorentz transformation and the translation.
We also require the discrete C, P, and T symmetries (but not always).

4. In order that the resulting equation of motion becomes a second order differential equation,
the Lagrangian does not contain higher derivative terms. (Otherwise, it may violate the
causality.)

2.3 Symmetry and conservation law

We discuss the role of symmetry in the Lagrangian formalism. In particular, we show that one
can construct the conserved quantity if there exists a continuous symmetry (parametrized by a
continuous parameter).

10



2.3.1 Euler–Lagrange equation

We start with the Lagrangian (2.2.1), then take the variation with the field ϕ(x) → ϕ(x)+δϕ(x),

δS =

∫
ddx

(
∂L

∂ϕ(x)
δϕ(x) +

∂L

∂(∂µϕ(x))
δ∂µϕ(x)

)
=

∫
ddx

(
∂L

∂ϕ(x)
− ∂µ

(
∂L

∂(∂µϕ(x))

))
δϕ(x) +

∫
ddx ∂µ

(
∂L

∂(∂µϕ(x))
δϕ(x)

)
. (2.3.1)

Assuming that the total derivative term does not contribute here, we obtain the Euler–Lagrange
equation (or simply called the equation of motion) from the stationary condition under the
variation,

0 =
δS

δϕ(x)
=⇒ 0 =

∂L

∂ϕ(x)
− ∂µ

(
∂L

∂(∂µϕ(x))

)
. (2.3.2)

2.3.2 Noether’s theorem

Assume that the action S is invariant under the infinitesimal transformation of the field,

ϕ(x) −→ ϕ′(x) = ϕ(x) + εG(ϕ(x)) , (2.3.3)

where ε is an infinitesimal parameter. We also denote G(ϕ(x)) = δϕ(x). When ε is a constant,
the corresponding symmetry is called global symmetry, while it is called local symmetry,
when ε depends on a point x. We focus on the global symmetry for the moment. In this case,
the variation of the Lagrangian is given by

δL =
∂L

∂ϕ(x)
εG(ϕ(x)) +

∂L

∂(∂µϕ(x))
∂µ(εG(ϕ(x)))

= ε

(
∂L

∂ϕ(x)
G(ϕ(x)) +

∂L

∂(∂µϕ(x))
∂µG(ϕ(x))

)
(2.3.2)
= ε

(
∂µ

(
∂L

∂(∂µϕ(x))

)
G(ϕ(x)) +

∂L

∂(∂µϕ(x))
∂µG(ϕ(x))

)
= ε∂µ

(
∂L

∂(∂µϕ(x))
G(ϕ(x))

)
. (2.3.4)

In order that the action is invariant under the variation, this should be written as a total
derivative,

ε∂µ

(
∂L

∂(∂µϕ(x))
G(ϕ(x))

)
= ε∂µX

µ(ϕ(x)) , (2.3.5)

which implies the conservation law,

∂µj
µ(x) = 0 (2.3.6)

of the current, which is called Noether current,

jµ(x) =
∂L

∂(∂µϕ(x))
G(ϕ(x))−Xµ(ϕ(x)) . (2.3.7)

Noether’s theorem states the existence of the Noether current for the system having a continuous
global symmetry.
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Noether charge

From the conserved current, we can construct the Noether charge (also called the conserved
charge)

Q =

∫
dDx j0(x) =⇒ dQ

dt
= 0 . (2.3.8)

Define the unitary operator

Uε = exp (iεQ) , (2.3.9)

then we obtain

Rε · ϕ(x) := Uεϕ(x)U
−1
ε = ϕ(x) + ε[iQ,ϕ(x)] +O(ε2) . (2.3.10)

Therefore, the Noether charge plays a role of the generator of the infinitesimal transformation,

[iQ,ϕ(x)] = G(ϕ(x)) . (2.3.11)

We remark that the Noether current is not unique, and it is still conserved after modification
by the anti-symmetric tensor,

jµ(x) −→ jµ(x) + ∂νf
µν(x) , fµν(x) = −fνµ(x) (2.3.12)

because3

∂µ∂νf
µν(x) = 0 . (2.3.13)

The Noether charge Q is not affected by this modification, as long as there is no surface contri-
bution, ∫

dDx ∂if
0i(x) = 0 . (2.3.14)

Energy-momentum tensor

We consider the translation4

xν −→ x′ν = xν − εν . (2.3.15)

Therefore, we obtain

ϕ′(x′) = ϕ(x) =⇒ ϕ′(x) = ϕ′(x′ + ε) ≈ ϕ(x) + εν∂νϕ(x) . (2.3.16)

Similarly, the Lagrangian density behaves

L (ϕ′(x), ∂ϕ′(x)) ≈ L (ϕ(x), ∂ϕ(x)) + εν∂νL (ϕ(x), ∂ϕ(x)) . (2.3.17)

Comparing with the previous argument, we obtain the energy-momentum tensor,

Tµν(x) =
∂L

∂(∂µϕ(x))
∂νϕ(x)− δµν L (ϕ(x), ∂ϕ(x)) , (2.3.18)

with the conservation law, ∂µTµν = 0, and the Noether charge

Pν =

∫
dDxT 0

ν(x) , (2.3.19)

which is a generator of the translation.
3If the function fµν(x) is a smooth and single-valued function.
4Since the translation is parametrized by a vector εν , it is isomorphic to R1,D. Combining the translation

symmetry, the Lorentz group is promoted to a non-compact group, called the Poincaré group.
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Generalized global symmetry

Using the differential form notation, the conservation low of the current (2.3.6) can be written
as follows,

d ? j = 0 , (2.3.20)

where the current j is interpreted as a one-form, d is the exterior derivative, and ? is the Hodge
dual operator with respect to d = D + 1 dimensional manifold, so that the dual current ?j is a
D-form.5 In this formulation, the Noether charge (2.3.8) is given by

Q =

∫
MD

?j , (2.3.21)

where MD can be taken to be a general D-dimensional submanifold of the spacetime.

We then define the symmetry generator (analog of the unitary operator (2.3.9)) associated
with MD,

UMD
= exp (iQ) = exp

(
i

∫
MD

?j

)
. (2.3.22)

The action of this generator is similarly defined as before (2.3.10),

RMD
· ϕ(x) := UMD

ϕ(x)U−1
MD

. (2.3.23)

We consider the case D = 1 and MD = R (x-direction) for simplicity. In this case, the action of
the generator (2.3.23) is graphically understood as follows,

t

x

x

RMD
· ϕ(x)

=

UMD

U−1
MD

ϕ(x)

UMD
ϕ(x)U−1

MD

(2.3.24)

From this point of view, this operation is topological in the sense that the operator RMD
topo-

logically wraps the field ϕ(x). We remark that, due to the conservation law, the generator is

translation invariant in t-direction, dUMD

dt
= 0,

t

x

UMD

=
UMD (2.3.25)

One can generalize this argument as follows. We start with a (p+1)-form conserved current
jp+1 and its dual ?jp+1, which is a D − p form. The conservation law is similarly written as

d ? jp+1 = 0 . (2.3.26)
5We will discuss the differential form in Sec. 2.6.3 for more details.
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Then, we define the symmetry generator associated with a (D − p)-dimensional submanifold
MD−p,

UMD−p
= exp

(
i

∫
MD−p

?jp

)
. (2.3.27)

In order to topologically wrap the field (the charged object under the symmetry generator), it
should be extended in a p-dimensional submanifold Mp, which defines the action of the generator,

RMD−p
· ϕ(Mp) := UMD−p

ϕ(Mp)U
−1
MD−p

. (2.3.28)

The global symmetry of such an extended (namely non-local) object is called the generalized
global symmetry [GKSW14]. In particular, the symmetry for a p-dimensionally extended
object is called the p-form symmetry, where the ordinary local symmetry corresponds to the
0-form symmetry.

2.3.3 Conformal symmetry

The Lorentz rotation and the translation are fundamental spacetime symmetries in the rela-
tivistic field theory. In addition, one may consider a special class of spacetime symmetries as
follows:

Dilatation (scale transform) : xµ −→ x′µ = e−αxµ = xµ − αxµ + · · · (2.3.29a)

Special conformal transform : xµ −→ x′µ =
xµ − βµx2

1− 2b · x+ b2x2
= xµ − βµx2 − 2βνxνx

µ + · · ·

(2.3.29b)

Exercise 2.2 (Special conformal transform). Verify that the special conformal transform (2.3.29b)
can be rewritten in the following form,

xµ

x2
−→ x′µ

x′2
=
xµ

x2
− βµ . (2.3.30)

Exercise 2.3 (Dilaton current). Let Dµ be the Noether current associated with the dilatation.
It is known that one can modify the energy-momentum tensor using a proper anti-symmetric
tensor (2.3.12), such that we have the relation6

Dµ = xνTµν . (2.3.31)

Show that the divergence of the dilaton current is given by the trace of the energy-momentum
tensor,

∂µD
µ = Tµµ . (2.3.32)

Similarly to the translation, the dilatation and the special conformal transformation are
non-compact, and isomorphic to R and R1,D. All these transformations are combined into the
conformal group, which is given by SO(2, D + 1),7 and the theory having this conformal

6We remark that, after this modification, the energy-momentum tensor is not symmetric in general.
7We remark that SO(2, D + 1) is the isometry group of the (D + 2)-dimensional Anti-de Sitter (AdS)

space, denoted by AdSD+2. This agreement is one of the aspects of the AdS/CFT correspondence, which
is the correspondence between (D + 2)-dimensional AdS space and (D + 1)-dimensional CFT. See, for example,
[AE15, BBS07] for details.
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symmetry is called the conformal field theory (CFT):

Lorentz group

Translation

Dilatation

Special conformal

SO(1, D)

R1,D

R

R1,D

Poincaré

Conformal group
SO(2, D + 1)

(2.3.33)

Exercise 2.4 (Counting the dimensions). The dimension of the orthogonal group SO(p, q) is
given by

dimSO(p, q) =
1

2
(p+ q)(p+ q − 1) . (2.3.34)

Verify that

dimSO(1, D) + dimR1,D + dimR+ dimR1,D = dimSO(2, D + 1) . (2.3.35)

As seen in Exercise 2.1, the double cover of the conformal group is given by the (non-compact)
spin group Spin(2, D + 1), which show the following isomorphisms:

Spin(2, 2) = SL(2,R)× SL(2,R) , Spin(2, 3) = Sp(4,R) , Spin(2, 4) = SU(2, 2) . (2.3.36)

We remark that the conformal symmetry in the case D = 1 (d = 2) is special: In this case,
an arbitrary holomorphic function generates the conformal transformation, and therefore the
conformal symmetry is enhanced to infinite dimensional symmetry. The symmetry algebra
describing the two-dimensional conformal symmetry is called the Virasoro algebra, which is
an infinite dimensional Lie algebra characterized by the following algebraic relation,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn+m,0 , n,m ∈ Z . (2.3.37)

The element c is the central charge, which commutes with all other generators (Ln)n∈Z. Hence,
one can treat it a (complex) number. See, for example, [DFMS97, Gab99, Sch05, Car08, Rib14,
Tes17] for details.

Exercise 2.5 (sl2 subalgebra of the Virasoro algebra). Verify that the generators (L0, L±1) of
the Virasoro algebra form the sl2 subalgebra.

In two dimensions, the holomorphic and anti-holomorphic sectors can be independently
discussed, and one can consider the Virasoro algebra for each sector. In fact, as seen from
the isomorphism (2.3.36), the two-dimensional conformal group consists of two SL(2) groups,
which are interpreted as the subgroups of the infinite conformal symmetries associated with the
holomorphic and anti-holomorphic sectors.

2.4 Scalar field

2.4.1 Real scalar field

Let us consider the scalar field theories. The simplest one is the real scalar field, φ(x) ∈ R, with
the following Lagrangian:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 . (2.4.1)
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This model has a discrete symmetry Z2 = O(1), φ(x) ↔ −φ(x), but does not have any continuous
symmetry, so that we cannot discuss the Noether current in this case.

The corresponding action is given by

S =

∫
ddxL (φ, ∂φ)

=

∫
ddx

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4
)

=

∫
ddx

(
−1

2
φ∂µ∂

µφ− 1

2
m2φ2 − λ

4!
φ4
)
+

∫
ddx

1

2
∂µ(φ∂

µφ) . (2.4.2)

We assume that the last term does not contribute to the action since it just gives the surface
term.

Exercise 2.6 (Klein–Gordon equation). Derive the Euler–Lagrange equation for this Lagrangian:(
∂µ∂

µ +m2
)
φ+

λ

3!
φ3 = 0 . (2.4.3)

This is actually a non-linear wave equation due to the cubic term φ3. When λ = 0, it is reduced
to a linear wave equation, a.k.a., Klein–Gordon equation.

In this case, the mass dimensions of the field and the parameters as follows:

[m] = 1 , [φ] =
d

2
− 1 , [λ] = 4− d . (2.4.4)

We remark that the dimension of the field φ is modified from (1.3.10). This is related to
the correspondence between D-dimensional statistical mechanics (statistical field theory) and
d(= D + 1)-dimensional quantum field theory. In d = 4, in particular, the coupling constant of
the higher term, φ(x)k with k > 4, has a negative dimension, which is irrelevant.

2.4.2 Complex scalar field

The next example is the complex scalar field theory,

L = ∂µφ
∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2 . (2.4.5)

In this case, the Lagrangian is invariant under the U(1) transformation,

φ(x) −→ eiθφ(x) = φ(x) + iθφ(x) +O(θ2) , (2.4.6a)

φ∗(x) −→ e−iθφ∗(x) = φ∗(x)− iθφ∗(x) +O(θ2) . (2.4.6b)

Applying the Noether current formula (2.3.7), we obtain the U(1) current,8

jµ = iφ
∂L

∂(∂µφ)
− iφ∗

∂L

∂(∂µφ∗)
= i∂µφ∗φ− iφ∗∂µφ , (2.4.7)

with the conserved charge,

Q =

∫
dDx j0 =

∫
dDx i

(
∂0φ∗φ− φ∗∂0φ

)
(2.4.8)

Exercise 2.7 (Klein–Gordon equation for the complex field). Derive the Euler–Lagrange equa-
tion for the complex scalar field φ(x):(

∂µ∂
µ +m2

)
φ+ λ(φ∗φ)φ = 0 , (2.4.9)

and similarly for φ∗(x).
8See the Maurer–Cartan form discussed in Sec. 2.6.4.
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2.4.3 Multi-component scalar field

Let φ(x) = (φi(x))i=1,...,n ∈ V = Rn be an n-component real scalar field. We denote the inner

product on V by (x, y) =

n∑
i=1

xiyi, and the norm |x|2 = (x, x). Then, we consider the Lagrangian

of the form,

L =
1

2
(∂µφ, ∂

µφ)− 1

2
m2|φ(x)|2 − λ

4!

(
|φ(x)|2

)2
, (2.4.10)

and the Euler–Lagrange equation gives rise to the n-component analog of the Klein–Gordon
equation. This Lagrangian is invariant under the O(n) transformation:

φi(x) −→ O j
i φj(x) , O ∈ O(n) . (2.4.11)

Therefore, we can discuss the Noether current for the multi-component real scalar.

Exercise 2.8. Derive the Noether current for the n-component real scalar field theory associated
with O(n) symmetry. We can similarly consider the n-component complex scalar field, φ(x) ∈ Cn

with the Lagrangian invariant under the U(n) = U(1) × SU(n) transformation. Derive the
Noether current for this case as well.

2.4.4 Non-linear sigma model

The non-linear sigma model is a natural generalization of the previous example: One can consider
the curved manifold as a target space V with the metric g = (gij)i,j=1,...,dimV ,

L =
1

2
gij(φ)∂µφ

i∂µφj =
1

2
(∂µφ, ∂

µφ) , (2.4.12)

where we denote the inner product with the metric gij by (·, ·) in general. For the moment, we
do not incorporate the potential term for simplicity. In the case of d = 2, the mass dimension
of the field is [φ] = 0, so that one can consider arbitrary metric as a function of φ.

Polyakov action

In general, one can consider the curved spacetime M with the metric h = (hµν)µ,ν=0,...,D and
deth < 0 (Lorentzian signature). In this case, the Lagrangian (2.4.12) is given by

L =
1

2
hµνgij(φ)∂

µφi∂νφj =
1

2
(∂µφ, ∂

µφ) , (2.4.13)

and the corresponding action is called the Polyakov action (The convention is slightly different
from the standard one). The field φ defines a map from the spacetime to the target space,
φ : M −→ V , which parametrizes the embedding of d-dimensional world volume within the
target space V . In this context, the invariance of the action under the deformation of the field
φi −→ φi + ξi is interpreted as the diffeomorphism in the target manifold V . For example, in
the case of d = 2, it describes the embedding of the world sheet of string, and only in this case,
the non-linear terms are relevant. See Sec. 1.3.3.
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O(n) non-linear sigma model

We can describe the non-linear sigma model with the curved target space without using the
curved metric g explicitly in some cases. Let gij = δij be a flat metric of Rn. Then, we consider
the constraint

(φ, φ) =

n∑
i=1

φ2i = 1 . (2.4.14)

Namely, φ is a unit vector in Rn, which defines the (n − 1)-dimensional sphere Sn−1 having a
positive constant curvature. Therefore, the Lagrangian (2.4.12) with the unit vector constraint
is the non-linear sigma model with the target space V = Sn−1. Since this model is invariant
under the O(n) transformation (2.4.11), it is called the O(n) non-linear sigma model. We remark
that the (n− 1)-sphere has a realization as the quotient, Sn−1 = O(n)/O(n− 1).

2.5 Spinor field

2.5.1 Dirac spinor

Let us discuss the spinor field Lagrangian in particular for d = 4. We first consider the kinetic
terms for 2 and 2∗ spinors:

iη†σµ∂µη , iξ†σ̄µ∂µξ , (2.5.1)

which are combined into the Dirac kinetic term,

L = iψ̄γµ∂µψ . (2.5.2)

This can be written in more symmetric way through integration by parts:

L =
1

2

(
iψ̄γµ∂µψ − i∂µψ̄γ

µψ
)
. (2.5.3)

We here define the Dirac spinor and the gamma matrices,

ψ =

(
ξα

ηα̇

)
, γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
. (2.5.4)

The Dirac conjugate is defined as

ψ̄ = ψ†γ0 = ψ†

(
0 1

1 0

)
. (2.5.5)

We remark the relation for the gamma matrices,

{γµ, γν} = γµγν + γνγµ = 2ηµν , (2.5.6)

which is invariant under the Lorentz transformation, γµ → Λµ νγν , Λ ∈ SO(1, 3). Hence, the
choice of the gamma matrices is not unique. The expression shown in (2.5.4) is called the Weyl
(chiral) basis.
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We also define

γ5 = iγ0γ1γ2γ3 =

(
+1 0

0 −1

)
, (2.5.7)

and the chiral projection operators,

1 + γ5

2
=

(
1 0

0 0

)
,

1− γ5

2
=

(
0 0

0 1

)
. (2.5.8)

Then, we obtain the left-handed and right-handed spinors,

ψR =
1 + γ5

2
ψ =

(
ξα

0

)
, ψL =

1− γ5

2
ψ =

(
0

ηα̇

)
. (2.5.9)

This decomposition is called the chiral decomposition, which can be discussed in even dimensions
in general.

Symmetry

The kinetic term is invariant under the U(1) transformations,

U(1)L : η −→ eiθLη , U(1)R : ξ −→ eiθRξ , (2.5.10)

which are equivalent to

U(1)V : ψ −→ ei(θL+θR)/2ψ , ψ̄ −→ ψ̄ e−i(θL+θR)/2 , (2.5.11a)

U(1)A : ψ −→ eiγ
5(−θL+θR)/2ψ , ψ̄ −→ ψ̄ eiγ

5(−θL+θR)/2 . (2.5.11b)

Therefore, the kinetic term of the Dirac spinor (2.5.2) has U(1)V × U(1)A symmetry, called
chiral symmetry. If one consider n sets of the Dirac spinor (n flavor system), it consequently
has U(n)V ×U(n)A symmetry.

Exercise 2.9 (Vector and axial symmetries). Derive the Noether currents associated with
U(1)V ×U(1)A symmetry from the Lagrangian (2.5.2):

jµ = ψ̄γµψ , j5µ = ψ̄γµγ5ψ , (2.5.12)

which are called the vector and axial-vector currents. The corresponding conserved charges are
then given by

Q =


∫

dDxψ†ψ =

∫
dDx

(
ξ†ξ + η†η

)
(U(1)V)∫

dDxψ†γ5ψ =

∫
dDx

(
ξ†ξ − η†η

)
(U(1)A)

(2.5.13)

Mass term

We can consider the mass term for the Dirac spinor

−mψ̄ψ = −m(ξ†η + η†ξ) , (2.5.14)

which is invariant only under U(1)V; This mass term violates the U(1)A symmetry. Then,
combining with the kinetic term (2.5.2), the total Lagrangian is given by

L = ψ̄(iγµ∂µ −m)ψ . (2.5.15)
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Exercise 2.10 (Dirac and Weyl equations). Derive the Euler–Lagrange equation,

(iγµ∂µ −m)ψ = 0 , (2.5.16)

which is known as Dirac equation. Then, if m = 0, confirm that the Dirac equation splits into
Weyl equations for ξ and η,

iσµ∂µη = 0 , iσ̄µ∂µξ = 0 . (2.5.17)

2.5.2 Interaction term

Let us consider the interaction term for the Dirac spinor. One of the most important examples
is the Nambu–Jona-Lasinio (NJL) model:

LNJL = ψ̄iγµ∂µψ +G
((
ψ̄ψ
)2

+
(
ψ̄iγ5ψ

)2)
, (2.5.18)

where G is the coupling constant. This kind of the interaction term is called the four-fermi
interaction. In fact, the interaction term of the NJL model is invariant under U(1)V × U(1)A

transformation (2.5.11), so that the NJL model has the chiral symmetry.9

Exercise 2.11 (Chiral symmetry of the NJL model).

1. Show eiθγ
5
= cos θ + iγ5 sin θ. One may use the formulas:

sinx =

∞∑
n=1

(−1)n
x2n+1

(2n+ 1)!
, cosx =

∞∑
n=1

(−1)n
x2n

(2n)!
, (2.5.19)

together with
(
γ5
)2

= 1.

2. Show that the interaction part of the NJL model is invariant under U(1)V ×U(1)A trans-
formation (2.5.11).

In addition to the four-fermi interaction, there is also an interaction between the fermion
(spinor) and the scalar field, called the Yukawa interaction, ψ̄ψφ. In this coupling, the scalar
field plays a role of the mass parameter for the spinor (originally introduced as a meson). See
Sec. 3.5.2 and Sec. 6.2.3.

2.5.3 Majorana spinor

We consider the charge conjugation operation:

C : ψ =

(
ξα

ηα̇

)
−→ ψC =

(
η∗α
ξ∗α̇

)
= iγ2ψ∗ =: Cψ̄T (2.5.20)

where the charge conjugation matrix is given by

C = iγ2γ0 =⇒ C2 = −1 . (2.5.21)
9This is true only at the classical level. Implementing the quantum correction, it is known that the chiral

symmetry of the NJL model would be spontaneously broken. This phenomenon (the realized vacuum state
violates the symmetry of the original Lagrangian) is called the spontaneous symmetry breaking (SSB) of
the chiral symmetry. See Chapter 6 for details.
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Exercise 2.12 (Charge conjugation). Show the gamma matrices transforms under the charge
conjugation:

C−1γµC = −γµT . (2.5.22)

Then, we consider the Majorana spinor,10

ψM =

(
η∗α
ηα̇

)
(2.5.23)

which is invariant under the charge conjugation, ψM = ψC
M. The Lagrangian is given by

L =
1

2
ψ̄Miγµ∂µψM − 1

2
mψ̄MψM = η†iσµ∂µη −

m

2

(
ηTεη − η†εη∗

)
. (2.5.24)

The mass term is explicitly written as

ηTεη = ηα̇εα̇β̇η
β̇ = η1η2 − η2η1 , (2.5.25)

which implies that we should consider the spinor field as an anti-commuting variable, called
Grassmann number, η1η2 = −η2η1. Otherwise, one cannot consider the mass term for the
Majorana spinor.11 The complex conjugate is now defined as (ηξ)∗ = ξ∗η∗.

We remark that the Majorana mass term violates the U(1)L symmetry described in (2.5.10)
into Z2 = O(1): η → −η.12 This means that the particle number is not a conserved quantity in
the presence of the Majorana mass term. The particle number parity (−1)N is still well-defined,
but it is not a Noether charge, since Z2 = O(1) is a discrete symmetry.

2.5.4 Grassmannian calculus

Let us discuss the calculus of the Grassmann numbers,

{θi, θj} = 0 , i, j = 1, . . . , n . (2.5.26)

From this property, it turns out that Grassmann numbers are nilpotent,

θ2i = 0 . (2.5.27)

Derivative and integral

We define the derivative in the same way as the ordinary commutative c-number,

∂

∂θi
θj = δi,j . (2.5.28)

We remark the relation [∂zi , zj ] = δi,j for the ordinary number is replaced with the anticommu-
tation relation, {

∂

∂θi
, θj

}
= δi,j . (2.5.29)

10This is also known as Nambu spinor in the context of Bogoliubov–de Gennes (BdG) Hamiltonian describing
excitation in the superconductor.

11Recall the spin-statistics theorem in Sec. 2.1.1.
12If one construct the Majorana spinor from the spinor ξ, the corresponding mass term similarly violates the

U(1)R symmetry.
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Then, the integral with the Grassmann number is defined as follows:∫
dθi θj = δi,j ,

∫
dθi 1 = 0 . (2.5.30)

Namely, the derivative and the integral are essentially the same for Grassmann numbers.

Exercise 2.13 (Jacobian for the Grassmann variables). Show that, under the transformation
U : θi 7→ Uijθj, the integral measure behaves as∫

dθ1 · · · dθn 7−→
∫

dθ1 · · · dθn (detU)−1 , (2.5.31)

and compare with the Jacobian of the ordinary commutative variables,

U : zi 7→ Uijzj ,

∫
dz1 · · · dzn 7−→

∫
dz1 · · · dzn (detU)+1 . (2.5.32)

2.6 Local symmetry and gauge field

2.6.1 Gauge transformation

We have considered the U(1) transformation (2.4.6), which does not depend on the spacetime
coordinate x ∈M (global transformation). Let us similarly consider the spacetime dependent
transformation (local transformation) as follows:

φ(x) −→ eiθ(x)φ(x) . (2.6.1)

This is called U(1) gauge transformation. Under such a local transformation, the derivative
term is not invariant,

∂µφ(x) −→ ∂µ

(
eiθ(x)φ(x)

)
= eiθ(x)∂µφ(x) + i(∂µθ(x))e

iθ(x)φ(x) . (2.6.2)

In order to compensate the extra factor, we then define covariant derivative:

Dµφ(x) = (∂µ − ieAµ(x))φ(x) , (2.6.3)

where the gauge transformation of the vector field Aµ(x), called gauge field, is given as follows:

Aµ(x) −→ Aµ(x) +
1

e
∂µθ(x) . (2.6.4)

Exercise 2.14 (U(1) gauge symmetry).

1. Show that the covariant derivative term behaves under the U(1) transformation as

Dµφ(x) −→ eiθ(x)Dµφ(x) . (2.6.5)

2. Confirm that the Lagrangian

L = (Dµφ)
∗(Dµφ)−m2φ∗φ− λ

2
(φ∗φ)2 (2.6.6)

is invariant under the local U(1) transformation.

3. Apply the same argument to the Dirac field, and show that the Lagrangian

L = ψ̄(iγµDµ −m)ψ (2.6.7)

is invariant under the local U(1) transformation.
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2.6.2 Maxwell term

We consider the kinetic term for the gauge field Aµ(x). The gauge invariant combination of the
first derivative terms is given by

Fµν = ∂µAν − ∂νAµ , (2.6.8)

which is called the field strength. Identifying the gauge field with the scalar and vector
potentials in d = 4, A = (φ,Ai=1,2,3), each component gives the electric and magnetic field,

F0i = ∂0Ai − ∂iφ = Ei , Fij = ∂iAj − ∂jAi = −εijkBk , (2.6.9)

with

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx
−Ez −By Bx 0

 . (2.6.10)

Exercise 2.15 (Field strength). Show that the field strength is obtained from the commutation
relation of the covariant derivative as follows:

1

−ie
[Dµ, Dν ]φ(x) = Fµνφ(x) . (2.6.11)

In order to discuss the Lagrangian, we should contract the spacetime indices to construct
the Lorentz scalar. Then, the gauge invariant kinetic term is given as follows:

−1

4
FµνF

µν =
1

2

(
~E · ~E − ~B · ~B

)
, (2.6.12)

which is called the Maxwell Lagrangian. In addition to the kinetic term, we also introduce
the source term,

L = −1

4
FµνF

µν −AµJ
µ , (2.6.13)

where we denote the current by Jµ = (ρ, J i=1,2,3) obeying the conservation law ∂µJ
µ = 0. We

remark that the source term behaves under the gauge transformation as

AµJ
µ −→

(
Aµ +

1

e
∂µθ

)
Jµ = AµJ

µ +
1

e
∂µ(θJ

µ)− 1

e
θ∂µJ

µ . (2.6.14)

Exercise 2.16 (Maxwell equations). Derive the Euler–Lagrangian equation from the Lagrangian (2.6.13):

∂µF
µν = Jν . (2.6.15)

Then, together with the Bianchi identity,

∂µFνλ + ∂νFλµ + ∂λFµν = 0 , (2.6.16)

compare with the Maxwell equations,

~∇ · ~E = ρ , ~∇× ~B − ∂0 ~E = ~J , (2.6.17a)
~∇ · ~B = 0 , ∂0 ~B + ~∇× ~E = 0 . (2.6.17b)
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2.6.3 Geometry of gauge theory

We discuss a geometric formulation of gauge theory. The gauge field and the field strength are
written as the differential forms:

A = Aµdx
µ , F = dA =

1

2
Fµνdx

µ ∧ dxν , (2.6.18)

where we denote the exterior derivative by d with the ∧-product, s.t., dxµ ∧ dxν = −dxν ∧ dxµ.
The p-form differential is in general written as

α =
1

p!
αi1···ipdx

i1 ∧ · · · ∧ dxip ∈ Ωp(M) , (2.6.19)

where we denote a set of p-forms on M by Ωp(M). From this point of view, the gauge field
plays a role of the connection on the spacetime M , and the field strength is the corresponding
curvature.

The Maxwell Lagrangian is then written using the differential form as follows:

L = −1

2
F ∧ ?F −A ∧ ?J , (2.6.20)

where the Hodge dual operator is a map, ? : Ωp(M) −→ Ωd−p(M). For the p-form differen-
tial (2.6.19), it is given by

?α =
1

(d− p)!
(?α)ip+1···iddx

ip+1 ∧ · · · ∧ dxid , (?α)ip+1···id =
1

p!
εi1···idα

i1···ip . (2.6.21)

In this formalism, the current conservation is described as

d?J = 0 . (2.6.22)

Then, the Euler–Lagrange equation and the Bianchi identity are given as

d?F = ?J , dF = 0 . (2.6.23)

We remark that the Bianchi identity immediately follows from the nilpotent property of the
exterior derivative d2 = 0. In particular, in the case of d = 4, the Hodge dual maps Ω2(M) −→
Ω2(M). Therefore, we obtain the dual curvature

? : Fµν 7−→ ?Fµν =
1

2
εµνρσF

ρσ . (2.6.24)

Exercise 2.17 (Topological term).

1. Show the component of the dual curvature is given by

?Fµν =


0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex
−Bz −Ey Ex 0

 , (2.6.25)

and compare with the original expression (2.6.10).

2. Show that another gauge invariant Lagrangian in d = 4 takes a form,

L = −1

8
εµνρσF

µνF ρσ =
1

2
~E · ~B . (2.6.26)
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3. Consider the Lagrangian (2.6.26) written in the differential form expression. Then show
that it is written in a total derivative form, and confirm that it does not contribute to the
Euler–Lagrange equation,

L = −1

2
F ∧ F = −1

2
d(AdA) . (2.6.27)

In this sense, this term is called the topological term, which is invariant under the con-
tinuous deformation of the field. This is related to the fact that the n-th Chern class is
written as an exterior derivative of the Chern–Simons (2n− 1)-form.

Selfdual/anti-selfdual tensor

The curvature splits into the selfdual and the anti-selfdual tensors in d = 4,13

F = F+ + F− , F± :=
1

2
(F ± ?F ) = ±?F . (2.6.28)

In fact, this corresponds to the (1, 0) and (0, 1) representations of the Lorentz group. See the
Lorentz group representations (2.1.20).

We then consider the (anti-)selfdual equation in d = 4,

?F = ±F ⇐⇒ F∓ :=
1

2
(F ∓ ?F ) = 0 . (2.6.29)

In fact, the (anti-)selfdual tensor turns out to be a solution to the Euler–Langange equation in
the absense of the source term,

d?F
(A)SD
= ±dF Bianchi

= 0 . (2.6.30)

2.6.4 Non-Abelian gauge theory

One may consider the local version of the higher-rank transformation of the field discussed in
Sec. 2.4.3. For example, let V = Cn, and consider U(n) = U(1) × SU(n) local transformation.
Since the U(1) part has been already discussed above, we may focus on the SU(n) part.

From now on, we consider the gauge transformation with generic simple Lie group G,

φ(x) −→ U(x)φ(x) , Aµ −→ UAµU
−1 − 1

ig
U∂µU

−1 , U(x) ∈ G , (2.6.31)

where g is the coupling constant. The Lie group element is parametrized as follows:

U(x) = exp (iθa(x)ta) , (2.6.32)

where (ta)a=1,...,dimG are the generators of the Lie algebra g = LieG with the commutation
relation14 [

ta, tb
]
= ifabc t

c , (2.6.33)

13For the moment, we consider the Euclidian signature. For the Lorentzian signature, we should put the
imaginary unit i =

√
−1 for the definition. See also (2.1.30).

14We apply the convention, s.t., the Lie algebra generators are hermitian. One often uses the anti-hermitian
generators in the literature, in which the imaginary unit i =

√
−1 does not explicitly appear: The commutation

relation is written as
[
ta, tb

]
= fab

c t
c, and the Lie group element is parametrized as g(x) = exp (θa(x)ta).
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and with the normalization

tr
(
tatb
)
=

1

2
δab . (2.6.34)

The derivative term U−1∂U is called the Maurer–Cartan one-form, which takes a value in
the Lie algebra g. Therefore, the gauge field is expanded with the Lie algebra generators,

Aµ =
dimG∑
a=1

Aaµt
a . (2.6.35)

In the case of G = SU(2), the generators are given by (a half of) the Pauli matrices, ta = σa/2

for a = 1, 2, 3. We remark that the mass term for the gauge field m2

2
trAµA

µ breaks the gauge
symmetry, as is not compatible with the gauge transformation (2.6.31).

Exercise 2.18 (Non-Abelian gauge symmetry).

1. Show that the covariant derivative term (in the fundamental representation of G) trans-
forms under the G-gauge transformation as follows:

Dµφ(x) := (∂µ − igAµ(x))φ(x)
(2.6.31)−−−−→ U(x)Dµφ(x) . (2.6.36)

2. Assuming θa � 1, the group element (2.6.32) has an expansion

U(x) = 1 + iθa(x)ta +O(θ2) . (2.6.37)

Then, show that the infinitesimal version of the the gauge transformation (2.6.31) is given
by

φ(x) −→ φ(x) + iθa(x)taφ(x) , (2.6.38a)

Aaµ −→ Aaµ +
1

g
∂µθ

a − f a
bc Abθc =: Aaµ +

1

g
Dµθ

a , (2.6.38b)

where Dµ here is the covariant derivative acting on a field in the adjoint representation of
G. In the matrix form, θ = θata, we insted have

Aµ −→ Aµ +
1

g
∂µθ + i[Aµ, θ] = Aµ +

1

g
Dµθ . (2.6.39)

3. Show that the field strength (curvature) constructed from the covariant derivative (See
(2.6.11)) takes a form,

Fµν =
1

−ig
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2.6.40)

4. Show that the field strength behaves under the G-gauge transformation as follows:

Fµν
(2.6.31)−−−−→ UFµνU

−1 . (2.6.41)

We can construct the gauge invariant Lagrangian similarly to the U(1) theory (2.6.13),

LYM = −1

2
trFµνF

µν = −1

4
F aµνF

aµν , (2.6.42)

which is called Yang–Mills (YM) Lagrangian. In fact, this Lagrangian contains non-linear
terms of the gauge field Aµ, which describe the self-interaction of the gauge field. See Sec. 5.2.5.
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Differential form description

We can formulate theG-gauge theory with the differential form description similarly to Sec. 2.6.3.
In general, the gauge field is described as a g-valued one-form on M ,

A ∈ Ω1(M, g) , (2.6.43)

with G-transformation

G : A −→ UAU−1 − 1

ig
UdU−1 , U ∈ G . (2.6.44)

Then, the curvature is given by a g-valued two-form,

F = DA = (d− igA∧)A = dA− igA ∧A ∈ Ω2(M, g) , (2.6.45)

with the G-transformation,

G : F −→ UFU−1 . (2.6.46)

Namely, A (more precisely, the covariant derivative D) and F transform in the adjoint repre-
sentation of G. This is mathematically established as the principal bundle with the structure
group G (principal G-bundle).

The Lagrangian is given as before

LYM = − tr (F ∧ ?F ) , (2.6.47)

with the Euler–Lagrange equation,

D?F = 0 . (2.6.48)

This is a non-linear second order PDE, so that it is difficult to solve it in general. We remark
that, in d = 4, the (anti-)selfdual curvature

?F = ±F (2.6.49)

solves this equation due to the (generalized version of) Bianchi identity,

D?F
(A)SD
= ±DF Bianchi

= 0 . (2.6.50)

The (anti-)selfdual equation is still non-linear, but is a first order PDE, which is easier to
deal with. The equation (2.6.49) is called the (anti-)self-dual Yang–Mills ((A)SDYM)
equation, and its solution is called the instanton, which would play an important role to
understand the non-perturbative aspects of four-dimensional quantum gauge theory.

Topological term

In the case of d = 4, there is another gauge invariant Lagrangian in addition to the YM La-
grangian,

L = trF ∧ F = d tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
=: dCS3 , (2.6.51)

where CS3 is called the Chern–Simons three-form. Since this term does not contribute to the
Euler–Lagrange equation, it is called the topological term as before.
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2.7 Gauge theory description of curved manifold

We start with generic metric g = (gµν)µ,ν=0,...,D. Since it is a symmetryc matrix depending on
a spacetime coordinate x ∈M , one can diagonalize it using the local SO(1, D) transformation,

gµν = e a
µ e

b
ν ηab (2.7.1)

where η = (ηab)a,b=0,...,D is the Lorentzian metric (2.1.1), and e = (e a
µ )µ,0=1,...,D ∈ SO(1, D) is

called the vielbein. Using the vielbein, one can describe the curved manifold with locally flat
patches. For the moment, we apply the Greek indices µ, ν, . . . as the curved manifold indices,
and the Latin indices a, b, . . . to the locally flat ones.

We then consider the local Lorentz transformation. For this purpose, we recall that the
Dirac spinor behaves under the Lorentz transformation,

ψ −→ exp

(
− i

4
εab(x)γab

)
ψ (2.7.2)

where we define

γab =
i

2
[γa, γb] . (2.7.3)

Namely, (γab)a,b=0,...,D are the generators of the Lorentz group in the spinor representation.
Applying the same argument to Sec. 2.6.4, we introduce the spin connection to define the
covariant derivative,

∇a = eµa(∂µ + iωµ) , ωµ =
1

2
ωabµ γab . (2.7.4)

This spin connection actually plays a role of the gauge field for the local Lorentz gauge symmetry.
It is in fact related to the Christoffel symbol as

ω a
µ b = e a

ν Γνµλe
λ
b − e a

ν ∂µe
ν
b , (2.7.5)

which is essentially the gauge transformation as shown in (2.6.31).

This formalism plays an essential role to consider the spinor field on the curved manifold.
In general, the gamma matrices obey the generalized version of the relation (2.5.6) as

{γµ, γν} = 2gµν . (2.7.6)

Using the vielbein, one can convert the gamma matrices to those for the flat space, γµ = e a
µ γa

with {γa, γb} = 2ηab. Therefore, the Lagrangian for the spinor on the curved manifold is given
by

L = ψ̄(iγa∇a −m)ψ . (2.7.7)

Differential form description

We apply the differential form formalism to the local Lorentz gauge field. We denote the vielbein
and the spin connection one-forms by

ea = e a
µ dx

µ , ωab = ωabµ dx
µ . (2.7.8)
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Applying the covariant derivative, we obtain the torsion and the Riemann curvature two-
forms as follows:

T a = dea + ωab ∧ eb =
1

2
T aµν dx

µ ∧ dxν , (2.7.9a)

Rab = dωab + ωac ∧ ωcb =
1

2
Rabµν dx

µ ∧ dxν , (2.7.9b)

which are converted to the standard convention,

T ρµν = eρaT
a
µν , Rρσµν = eρae

b
σ R

a
bµν . (2.7.10)

The Ricci curvature is constructed from the Riemann curvature,

Rµν = Rρµρν = eρae
b
µ R

a
bρν . (2.7.11)

In d = 4, we may consider the following topological terms:

ea ∧ eb ∧Rab , T a ∧ Ta , Rab ∧Rba , εabcdR
ab ∧Rcd (2.7.12)

The third one is the Pontryagin class, and the four one is the Euler class of the tangent
bundle. See, for example, [Nak03, Sec. 11.4] for details. The linear combination of the first and
the second ones, T a ∧Ta− ea ∧ eb ∧Rab is called the Nieh–Yan four-form. The corresponding
(gravitational) Chern–Simons three-forms are given as

Rab ∧Rba = d

(
ωab ∧ dωba +

2

3
ωab ∧ ωbc ∧ ωca

)
, (2.7.13a)

T a ∧ Ta − ea ∧ eb ∧Rab = d(ea ∧ Ta) = d
(
ea ∧ dea + ea ∧ ωba ∧ eb

)
. (2.7.13b)
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Chapter 3

Path integral quantization

In this Chapter, we discuss the path integral formalism to quantize the field theories based on the
Lagrangian formalism discussed in Chapter 2. We also discuss how to deal with the interacting
field theory based on the perturbation expansion, and introduce the Feynman rule to efficiently
describe the expansion.

3.1 Generating functional

The path integral is formulated as an amplitude from the initial state at ti to the final state at
tf. We in particular interested in the situation (ti, tf) → (−∞,+∞), s.t., the initial and final
states are given by the vacuum (ground state) |0〉.1 Then, the corresponding amplitude in the
path integral formalism (also called the partition function in the analogy with the statistical
mechanics) is given by

Z := 〈0|0〉 =
∫
Dφ exp

(
i

∫
ddxL (φ, ∂φ)

)
, (3.1.1)

where the path integral measure is a formal product of the measures at each spacetime point,

Dφ =
∏
x∈M

dφ(x) . (3.1.2)

With this formalism, we consider the n-point correlation function,

〈T[φ(x1) · · ·φ(xn)]〉 =
〈0|T[φ(x1) · · ·φ(xn)] |0〉

〈0|0〉

=
1

Z

∫
Dφφ(x1) · · ·φ(xn) exp

(
i

∫
ddxL (φ, ∂φ)

)
, (3.1.3)

where we apply the time-ordering product,

T[φ(x1) · · ·φ(xn)] = φ(xin) · · ·φ(xi1) s.t.,
(ik)k=1,...,n = {1, . . . , n} ,

+∞ > tin > · · · > ti1 > −∞ .
(3.1.4)

In order to compute the correlation function, we consider the generating functional,

Z[J ] =

∫
Dφ exp

(
i

∫
ddx (L (φ, ∂φ) + J(x)φ(x))

)
, (3.1.5)

1One can justify this argument through the Euclidianization: Applying the imaginary time formalism t→ −iτ ,
the phase factor eiE(ti−tf) → eE(τi−τf) → 0 if E 6= 0 at (τi, τf) → (−∞,+∞).
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where J(x) is the external source field. In this convention, the partition function is given by
Z = Z[J = 0]. Then, the functional derivative with the source field is given by

δZ[J ]

δJ(x)
= i

∫
Dφφ(x) exp

(
i

∫
ddx (L (φ, ∂φ) + J(x)φ(x))

)
, (3.1.6)

so that we obtain the n-point function via the functional derivatives,

〈T[φ(x1) · · ·φ(xn)]〉 =
i−n

Z[J ]

δnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J→0

. (3.1.7)

In many cases, we are interested in the connected part (also known as the cumulant) of
the correlation function. For example, the connected part of the lower order correlation functions
is given by

〈φ(x1)φ(x2)〉c = 〈φ(x1)φ(x2)〉 − 〈φ(x1)〉 〈φ(x2)〉 , (3.1.8a)

〈φ(x1)φ(x2)φ(x3)〉c = 〈φ(x1)φ(x2)φ(x3)〉

− 〈φ(x1)〉 〈φ(x2)φ(x3)〉 − 〈φ(x2)〉 〈φ(x1)φ(x3)〉 − 〈φ(x3)〉 〈φ(x1)φ(x2)〉

+ 2 〈φ(x1)〉 〈φ(x2)〉 〈φ(x3)〉 , (3.1.8b)

where we do not show the time-ordering symbol for simplicity. We remark that, for the φ4-
theory, the odd-point correlation functions become zero due to the symmetry φ → −φ (see
Exercise 3.3). Hence, for example, we have 〈φ(x1)φ(x2)〉c = 〈φ(x1)φ(x2)〉.

Exercise 3.1 (Generating functional of the connected correlation functions). Show that the
connected part is obtained as

〈T[φ(x1) · · ·φ(xn)]〉c = i−n
δnW [J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J→0

, (3.1.9)

where we define the generating functional of the connected correlation function as follows:

W [J ] = logZ[J ] ⇐⇒ Z[J ] = exp (W [J ]) . (3.1.10)

3.2 Free scalar field

Let us demonstrate the generating functional formalism with the free scalar theory (cf. (2.4.1)),

L0 =
1

2
∂µφ(x)∂

µφ(x)− 1

2
m2φ(x)2 . (3.2.1)

In this case, the generating functional (3.1.5) is given by

Z0[J ] =

∫
Dφ exp

(
i

∫
ddx

(
1

2
∂µφ(x)∂

µφ(x)− 1

2
m2φ(x)2 + J(x)φ(x)

))
=

∫
Dφ exp

(
i

∫
ddx

(
−1

2
φ(x)

(
∂µ∂

µ +m2
)
φ(x) + J(x)φ(x)

))
. (3.2.2)

In order to evaluate this integral, let us introduce the Gaussian integral formulas as follows.

Exercise 3.2 (Gaussian integrals).

1. Show the following integral formulas (Gaussian integrals),∫
R
dx exp

(
−1

2
x2
)

=
√
2π ,

∫
C
dz dz∗ exp

(
−|z|2

)
= 2π . (3.2.3)
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2. Let A and B be positive semi-definite real symmetric and complex Hermitian matrices.
Show the multi-dimensional analogs of the Gaussian integral,

∫ n∏
i=1

dxi exp

−1

2

n∑
i,j=1

xiAijxj

 =

√
(2π)n

detA
, (3.2.4a)

∫ n∏
i=1

dzi dz
∗
i exp

−
n∑

i,j=1

z∗iBijzj

 =
(2π)n

detB
. (3.2.4b)

Hint: These integrals are invariant under

xi −→ Oijxj , Aij −→ OikAklO
T
lj , (3.2.5a)

zi −→ Uijzj , Bij −→ UikBklU
†
lj , (3.2.5b)

for O ∈ O(n) and U ∈ U(n), so that it is convenient to consider the basis diagonalizing A
and B.

3. Show the formulas

∫ n∏
i=1

dxi exp

−1

2

n∑
i,j=1

xiAijxj +

n∑
i=1

cixi

 =

√
(2π)n

detA
exp

1

2

n∑
i,j=1

ciA
−1
ij cj

 ,

(3.2.6a)∫ n∏
i=1

dzi dz
∗
i exp

−
n∑

i,j=1

z∗iBijzj +

n∑
i=1

(d∗i zi + z∗i di)

 =
(2π)n

detB
exp

 n∑
i,j=1

d∗iB
−1
ij dj

 .

(3.2.6b)

We apply the Gaussian integral formulas to the path integral. We first rewrite the quadratic
term in the path integral (3.2.2) as follows:∫

ddxφ(x)
(
∂µ∂

µ +m2
)
φ(x) =

∫
ddx ddy φ(x)

(
∂µ∂

µ +m2
)
δ(d)(x− y)φ(y)

=:

∫
ddx ddy φ(x)K(x− y)φ(y) , (3.2.7)

where K(x− y) =
(
∂µ∂

µ +m2
)
δ(d)(x− y) is the integral kernel for the real scalar field theory,

and we define the integral operator,

K̂ · φ(x) =
∫

ddxK(x− y)φ(y) . (3.2.8)

Then, formally applying the formula (3.2.6) to the infinite dimensional case, we obtain

Z0[J ] =

∫
Dφ exp

(
i

∫
ddx ddy

(
−1

2
φ(x)K(x− y)φ(y)

)
+ i

∫
ddxJ(x)φ(x)

)
= Z0[J = 0] exp

(
i

2

∫
ddx ddy J(x)K−1(x− y)J(y)

)
. (3.2.9)

Here K−1(x− y) is defined as the inverse of the integral kernel K(x− y),∫
ddy K(x− y)K−1(y − z) = (∂µ∂

µ +m2)K−1(x− z) = δ(d)(x− z) , (3.2.10)
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which is interpreted as the corresponding Green’s function, also called the propagator. Let
(λ)i∈Z+ be the eigenvalues of the kernel (the spectra of the Klein–Gordon operator), s.t.,

iK̂ · φi(x) = i

∫
ddy K(x− y)φi(y) = λi φi(x) . (3.2.11)

Then, the J = 0 part of the partition function Z[J = 0] is given as the functional (Laplacian)
determinant as follows,2

Z0[J = 0] ∝ det
(
iK̂
)−1/2

=
∞∏
i=1

1√
λi
. (3.2.14)

Applying the functional derivative formula (3.1.7) to the generating functional (3.2.9), we
see that the 2-point function for the free scalar theory is given by Green’s function:

〈T[φ(x)φ(y)]〉0 =
−1

Z0[J ]

δ2Z0[J ]

δJ(x)δJ(y)

∣∣∣∣
J→0

= −iK−1(x− y) . (3.2.15)

Exercise 3.3 (Wick’s theorem). The 2n-point function is given by summation over the pair
contributions,

〈T[φ(x1) · · ·φ(x2n)]〉0 =
∑

possible pairs
(−i)nK−1(xi1 − xi2) · · ·K−1(xi2n−1 − xi2n)

= Hf
1≤i,j≤2n

(
−iK−1(xi − xj)

)
, (3.2.16)

where we define the Hafnian for the size 2n symmetric matrix, Aji = Aij,

Hf A =
1

2nn!

∑
σ∈S2n

n∏
i=1

Aσ(2i−1)σ(2i) . (3.2.17)

We denote the symmetric group of the rank 2n by S2n.

1. Verify this formula for the 4-point function,

〈T[φ(x1) · · ·φ(x4)]〉0 = −K−1(x1 − x2)K
−1(x3 − x4)−K−1(x1 − x3)K

−1(x2 − x4)

−K−1(x1 − x4)K
−1(x2 − x3) . (3.2.18)

2. Show that the n-point function becomes zero for n ∈ 2Z+ 1,

〈T[φ(x1) · · ·φ(xn)]〉0 = 0 for n ∈ 2Z+ 1 . (3.2.19)
2We may regularize this infinite product by introducing the spectral zeta function,

ζ(s) =

∞∑
i=1

1

λs
i

=⇒ ∂

∂s

∣∣∣∣∣
s=0

ζ(s) = −
∞∑
i=1

log λi . (3.2.12)

Precisely speaking, the infinite sum (Dirichlet series) converges for sufficiently large s, so that we should properly
consider the analytic continuation. Then, we obtain

Z0[J = 0] = exp

(
1

2

∂

∂s

∣∣∣∣∣
s=0

ζ(s)

)
. (3.2.13)

This is called the zeta function regularization scheme. In order to apply this regularization scheme, we assume
that the Dirac spectrum is discrete (the spacetime is compact or the field φ is well localized due to the potential).
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The formula (3.2.16) is called Wick’s theorem for the scalar field, which is graphically
expressed as follows:

〈T[φ(x1)φ(x2)]〉0 = φ1φ2 = −iK−1
12 , (3.2.20a)

〈T[φ(x1)φ(x2)φ(x3)φ(x4)]〉0 = φ1φ2φ3φ4+φ1φ2φ3φ4+φ1φ2φ3φ4

= −K−1
12 K

−1
34 −K−1

13 K
−1
24 −K−1

14 K
−1
23 , (3.2.20b)

where we denote φi = φ(xi) and K−1
ij = K−1(xi − xj).

Exercise 3.4 (Momentum space representation). The integral representation of the delta func-
tion is given as

δ(d)(x) =

∫
ddp

(2π)d
e−ip·x . (3.2.21)

1. Show that the propagator given by

i 〈T[φ(x)φ(y)]〉0 = K−1(x− y) = −
∫

ddp

(2π)d
e−ip·(x−y)

p2 −m2 + iε
(3.2.22)

obeys the relation (3.2.10).

2. The parameter ε is introduced to avoid the poles of the integrand at p2 = m2. Denoting
p = (p0, ~p), these poles are at p20 = ~p2 +m2 =: E2

p . We shift the pole by p0 = ±(Ep − iε),
which is equivalent to taking the p0-integral contour

+Ep

−Ep

p0

(3.2.23)

Then, verify that it reproduces the time-ordering product,

〈T[φ(x)φ(y)]〉0 =

〈φ(x)φ(y)〉0 (x0 > y0)

〈φ(y)φ(x)〉0 (x0 < y0)
(3.2.24)

where the two-point function is given by

〈φ(x)φ(y)〉0 =
∫

dDp

(2π)D
e−ip·(x−y)

2Ep
. (3.2.25)

3.3 Free Dirac field

We then turn to the Dirac field with the Lagrangian,

L0 = ψ̄(iγµ∂µ −m)ψ . (3.3.1)

The corresponding generating functional is given by

Z0[η̄, η] =

∫
Dψ̄Dψ exp

(
i

∫
ddx

(
ψ̄(x)(iγµ∂µ −m)ψ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)

))
, (3.3.2)

where (η(x), η̄(x)) are the external spinor source fields. In the path integral formalism, the
spinor fields are described by Grassmann numbers.
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Exercise 3.5 (Gaussian integral of the Grassmann variables). Define the Pfaffian for a skew-
symmetric matrix of size 2n, Aij = −Aji,

Pf A =
1

2nn!

∑
σ∈S2n

(−1)σ
n∏
i=1

Aσ(2i−1)σ(2i) , (3.3.3)

where S2n is the symmetric group of the rank 2n, and (−1)σ is the signature of the permutation
σ.3 The square of the Pfaffian is given by the determinant,

(Pf A)2 = detA . (3.3.4)

1. Derive the expressions of the Pfaffian for n = 1, 2,

Pf A = A12 (n = 1) (3.3.5a)

= A12A34 −A13A24 +A14A23 (n = 2) (3.3.5b)

and verify the relation (3.3.4) for these cases.

2. Based on the integrals of Grassmann numbers defined in Sec. 2.5.4, verify the Gaussian
integral formula for n = 1, 2,

∫
dθ1 · · · dθn exp

−1

2

2n∑
i,j=1

θiAijθj

 = Pf A . (3.3.6)

3. Using the formula (3.3.6), show the complex version of the Gaussian integral

∫
dθ1 dθ

∗
1 · · · dθn dθ∗n exp

−
n∑

i,j=1

θ∗iAijθj

 = detA . (3.3.7)

We remark that there is no restriction to the matrix size for the complex case.

Using the Gaussian integral formulas, the generating functional is given as follows:

Z0[η̄, η]

Z0[η̄, η = 0]
= exp

(
−i

∫
ddx ddy η̄(x)K−1

D (x− y)η(y)

)
, (3.3.8)

where Green’s function is defined as the inverse of the integral kernel for the Dirac field, also
called the Dirac operator,

KD(x− y) = (iγµ∂µ −m)δ(d)(x− y) . (3.3.9)

The zero-source part of the partition function is given by the functional determinant similarly
to (3.2.14),

Z0[η̄, η = 0] = det(iKD) . (3.3.10)

Starting with the Majorana spinor, instead of the Dirac spinor, the partition function is replaced
with the Pfaffian of the Dirac operator, Pf(iKD).

3We remark the similarity with the Hafnian (3.2.17).
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Correlation function

We can compute the correlation function similarly to the scalar field theory. The 2-point function
is given by 〈

T
[
ψ(x)ψ̄(y)

]〉
0
= iK−1

D (x− y) . (3.3.11)

We remark that, since the spinor field consists of several components, ψ = (ψα), the 2-point
function is a matrix-valued function as well as the Dirac operator KD. In general, n-point
function is given by Wick’s theorem:〈

T
[
ψ(x1)ψ̄(x2)

]〉
0
= ψ1ψ̄2 = iK−1

12 , (3.3.12a)〈
T
[
ψ(x1)ψ̄(x2)ψ(x3)ψ̄(x4)

]〉
0
= ψ1ψ̄2ψ3ψ̄4 + ψ1ψ̄2ψ3ψ̄4

= −K−1
12 K

−1
34 −K−1

14 K
−1
23 , (3.3.12b)

where K−1
ij = K−1

D (xi − xj). In this case, the contraction between ψi and ψj (ψ̄i and ψ̄j), ψiψj ,
does not contribute to the correlation function.

3.4 Interacting field

We consider the interacting field theory based on the free field description discussed above. We
start with the following identity,

f

(
−i

δ

δJ

)
Z0[J ] =

∫
Dφf(φ) exp

(
i

∫
ddx (L0(φ, ∂φ) + J(x)φ(x))

)
. (3.4.1)

Applying this identity, we obtain the generating functional in the presence of the interaction
term Lint(φ),4

Z[J ] =

∫
Dφ exp

(
i

∫
ddx (L0(φ, ∂φ) + Lint(φ) + J(x)φ(x))

)
= exp

(
i

∫
ddx

(
Lint

(
−i

δ

δJ(x)

)))
Z0[J ] . (3.4.2)

In the operator formalism, this expression corresponds to the interaction picture, while the
previous one (3.1.5) is based on the Heisenberg picture.

In order to apply the perturbative expansion, we discuss an alternative expression of the
generating function. Recalling the expression for the free part of the generating function (3.2.9),

4We assume that the interaction part of the Lagrangian does not contain the derivative terms, ∂φ(x), for
simplicity. In general, we can also incorporate the derivative terms. See, for example, Chapter 5.
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the full generating function is given by

Z[J ]

Z0[J = 0]
= exp

(
i

∫
ddx

(
Lint

(
−i

δ

δJ(x)

)))
Z0[J ]

Z0[J = 0]

= exp

(
i

∫
ddx

(
Lint

(
−i

δ

δJ(x)

)))
exp

(
i

2

∫
ddx ddy J(x)K−1(x− y)J(y)

)
= exp

(
i

∫
ddx

(
Lint

(
−i

δ

δJ(x)

)))
× exp

(
− i

2

∫
ddx ddy

δ

δφ(x)
K−1(x− y)

δ

δφ(y)

)
exp

(
i

∫
ddxJ(x)φ(x)

)∣∣∣∣∣
φ=0

= exp

(
− i

2

∫
ddx ddy

δ

δφ(x)
K−1(x− y)

δ

δφ(y)

)
× exp

(
i

∫
ddxLint(φ)

)
exp

(
i

∫
ddxJ(x)φ(x)

)∣∣∣∣∣
φ=0

(3.4.3)

Exercise 3.6. Verify the formula

exp

(
− i

2

∫
ddx ddy

δ

δφ(x)
K−1(x− y)

δ

δφ(y)

)
O(φ)

∣∣∣∣∣
φ=0

= 〈T[O(φ)]〉0 (3.4.4)

for

O = φ(x1) · · ·φ(xn) , (3.4.5)

which reproduces the n-point function (3.2.16).

With this formula, we obtain the following expression for the generating function,

Z[J ]

Z0[J = 0]
=

〈
T

[
exp

(
i

∫
ddx (Lint(φ) + J(x)φ(x))

)]〉
0

, (3.4.6a)

Z[J ]

Z[J = 0]
=

〈
T

[
exp

(
i

∫
ddx (Lint(φ) + J(x)φ(x))

)]〉
0

/〈
T

[
exp

(
i

∫
ddxLint(φ)

)]〉
0

.

(3.4.6b)

The reason why we normalize it by Z[J = 0] is to subtract the vacuum contributions. If
the interaction part of the Lagrangian contribution is sufficiently small, one can evaluate the
generating function with the following expansion5

exp

(
i

∫
ddx (Lint(φ) + J(x)φ(x))

)
=

∞∑
m=0

im

m!

∫
ddx1 · · · ddxm Lint(φ(x1)) · · ·Lint(φ(xm)) exp

(
i

∫
ddxJ(x)φ(x)

)
. (3.4.7)

We can apply the same analysis for the Dirac field,

Z[η, η̄]

Z0[η, η̄ = 0]
= exp

(
−i

∫
ddx ddy

δ

δψ(x)
K−1

D (x− y)
δ

δψ̄(y)

)
× exp

(
i

∫
ddx

(
Lint

(
δ

δψ
,
δ

δψ̄

)
+ η̄(x)ψ(x) + ψ̄(x)η(x)

))∣∣∣∣∣
ψ,ψ̄=0

. (3.4.8)

This is a starting point of the perturbative analysis for the interacting field theory.
5Although this gives an asymptotic expansion, which does not converge in general, one can obtain very high-

precision results for several theories.
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3.5 Feynman rule

3.5.1 Scalar field theory

Let us demonstrate the perturbative expansion (3.4.7) with the φ4-theory (2.4.1), as an example.
In this case, the interaction term is given by

Lint(φ) = − λ

4!
φ(x)4 . (3.5.1)

The parameter λ is called the coupling constant, which characterizes the self-interaction (non-
linearity) effect. From this point of view, (3.4.7) is an asymptotic expansion with respect to the
coupling constant λ, so that we should assume that it is sufficiently small.

For example, the two-point correlation function is given by the functional derivative of the
generating function,

〈T[φ(z1)φ(z2)]〉 =
−1

Z[J ]

δ2Z[J ]

δJ(z1)δJ(z2)

∣∣∣∣
J→0

(3.4.7)
=

∞∑
m=0

im

m!

∫
ddx1 · · · ddxm 〈T[Lint(x1) · · ·Lint(xm)× φ(z1)φ(z2)]〉0

=

∞∑
m=0

(−iλ)m

(4!)mm!

∫
ddx1 · · · ddxm

〈
T
[
φ(x1)

4 · · ·φ(xm)4φ(z1)φ(z2)
]〉

0
. (3.5.2)

This shows the expansion of the full correlation function with the bare correlation function (the
correlation function of the free theory). This can be evaluated with Wick’s theorem discussed
in Sec. 3.2. The O(λ) term is given as follows:

〈
T
[
φ4 · φ1φ2

]〉
0
= φφφφ ·φ1φ2+φφφφ ·φ1φ2 . (3.5.3)

We see that there are two kinds of contributions to the two-point function. One can apply this
formalism similarly to higher-point functions, but it seems more involved.6

Instead of applying Wick’s theorem, we introduce the Feynman rule to evaluate the cor-
relation function:

Propagator: x y = −iK−1(x− y) (3.5.4a)

Vertex: x = −iλ

∫
ddx (3.5.4b)

In this formalism, the O(λ) contribution (3.5.3) is graphically given by (but we do not yet
integrate the variable x1)

〈
T
[
φ(x1)

4 · φ(z1)φ(z2)
]〉

0
=

z1 z2

x1 +

z1 z2x1

. (3.5.5)

Then, apparently the first one is a disconnected diagram, which will be subtracted in the end.
The second term has an interpretation as an amplitude from z1 to z2 with interaction at the
point x1, which will be integrated out to take into account all the possible configurations like
this.

6The O(λ2) contribution is given by ten field insertion in total,
〈
T
[
φ(x1)

4 · φ(x2)4 · φ(z1)φ(z2)
]〉

0
.
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Exercise 3.7 (Two-loop contribution). Draw the Feynman diagrams appearing in the O(λ2)

contribution
〈
T
[
φ(x1)

4 · φ(x2)4 · φ(z1)φ(z2)
]〉

0
, which correspond to the contractions,

φφφφ ·φφφφ ·φ1φ2 , φφφφ ·φφφφ ·φ1φ2 , φφφφ ·φφφφ ·φ1φ2 . (3.5.6)

One can similarly formulate the Feynman rule in the momentum space. In this case, we
should impose the momentum conservation at each vertex.

Propagator: p =
i

p2 −m2 + iε
(3.5.7a)

Vertex: = −iλ (3.5.7b)

3.5.2 Dirac field theory

Let us consider the perturbative expansion for the fermionic field theory. We now consider the
Yukawa interaction as an example,

Lint = −gψ̄ψφ . (3.5.8)

Since we have both the scalar field and the Dirac field in this case, we have accordingly two
propagators,

Bosonic propagator: p =
i

p2 −m2 + iε
(3.5.9a)

Dirac propagator: p =
i(/p+m)

p2 −m2 + iε
(3.5.9b)

Vertex: = −ig (3.5.9c)

In this case, the fermionic propagator is oriented. For example, the two-particle scattering
process is described by

ψ

ψ̄

ψ

ψ̄

(3.5.10)

Identifying the scalar field as a scalar meson, the Dirac field as quarks, such a process is inter-
preted as meson exchange process, which plays an important role in the nuclear interaction.

Another example is the electromagnetic interaction,

Lint = eψ̄γµψAµ , (3.5.11)

with the diagrams,

Photon propagator: µ ν =
igµν
p2 + iε

(3.5.12a)

Vertex: µ = ieγµ (3.5.12b)
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Since the photon field Aµ has the vector index µ, we should specify it in the diagram. For
example, one can derive the Coulomb interaction between the electrons from the diagram in the
non-relativistic limit:

ψ

ψ̄

ψ

ψ̄

(3.5.13)

Exercise 3.8 (Fermion and photon propagators).

1. Derive the momentum space representation of the fermion propagator (3.5.9b) from the
Dirac Lagrangian (2.5.15).

2. Derive the photon propagator (3.5.12a) in the Lorentz gauge ∂µAµ = 0 from the Maxwell
Lagrangian (2.6.13).

3.6 Effective action

The generating functional (3.1.5) is a functional depending on the external field J(x). We
introduce another functional, that is called the effective action from the Legendre transform
of the generating functional for the connected part (3.1.10),

Γ[φ] =W [J ]−
∫

ddxJ(x)φ(x) . (3.6.1)

Recalling the definition of the generating functional (3.1.5), Γ[φ] agrees with the action S[φ] in
the classical limit,

Z[J ] = eiW [J ] ≈ eiS[φ]+i
∫
J(x)φ(x) . (3.6.2)

From the functional derivatives of these functional, we obtain

δW [J ]

δJ(x)
= φ(x) ,

δΓ[φ]

δφ(x)
= −J(x) . (3.6.3)

Since we will take the limit J → 0, we will obtain δΓ[φ]/δφ(x) = 0, which is interpreted as an
“effective” version of the Euler–Lagrange equation. The second derivatives are

δ2W [J ]

δJ(x)δJ(y)
=
δφ(x)

δJ(y)
=
δφ(y)

δJ(x)
,

δ2Γ[φ]

δφ(x)δφ(y)
= −δJ(x)

δφ(y)
= −δJ(y)

δφ(x)
=: X(x, y) , (3.6.4)

which yield the relation∫
ddy

δ2W [J ]

δJ(x)δJ(y)

δ2Γ[φ]

δφ(y)δφ(z)
= −

∫
ddy

δφ(x)

δJ(y)

δJ(y)

δφ(z)
= −δ(d)(x− z) . (3.6.5)

Namely, the functional Hessian of the effective action is the inverse of that of the generating
functional, which gives rise to the connected two-point function in the presence of the external
source,

− δ2W [J ]

δJ(x)δJ(y)
= X−1(x, y) = 〈T[φ(x)φ(y)]〉c,J (3.6.6)
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In order to understand the role of the effective action, we further take a functional derivative
of (3.6.5) with the external source J(w), which gives rise to

0 =

∫
ddy

δ3W [J ]

δJ(x)δJ(y)δJ(w)

δ2Γ[φ]

δφ(y)δφ(z)

+

∫
ddy ddw′ δ2W [J ]

δJ(x)δJ(y)

δ3Γ[φ]

δφ(y)δφ(z)δφ(w′)

δφ(w′)

δJ(w)

=

∫
ddy

δ3W [J ]

δJ(x)δJ(y)δJ(w)
X(y, z)

+

∫
ddy ddw′ (−X−1(x, y)

)(
−X−1(w′, w)

) δ3Γ[φ]

δφ(y)δφ(z)δφ(w′)
. (3.6.7)

Therefore, we obtain

δ3W [J ]

δJ(x)δJ(y)δJ(z)

=

∫
ddw ddw′ ddw′′ (−X−1(x,w)

)(
−X−1(y, w′)

)(
−X−1(z, w′′)

) δ3Γ[φ]

δφ(w)δφ(w′)δφ(w′′)
. (3.6.8)

We denote the connected n-point function by

(n-legs) . (3.6.9)

We remark the connected two-point function is given by X−1 = . Then, the relation
(3.6.8) implies that the connected three-point function has the following decomposition:

= (3.6.10)

where the blue symbol shows the one-particle irreducible (1PI) diagram, which cannot be
split into two diagrams by removing a single line. For example, we have

∈ 1PI 6∈ 1PI (3.6.11)

Exercise 3.9. Show that the effective action is a generating function of the 1PI n-point functions
by induction (We already show it is true for n = 3).

In particular, the 1PI two-point function −iΣ := is called the self-energy. In fact,
the connected two-point function is given by the series of the self energies:

= + + + · · · (3.6.12)
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In the case of φ4-theory, we have 〈φ(x1)φ(x2)〉c = 〈φ(x1)φ(x2)〉 (see Sec. 3.1). Hence, in the
momentum space, this series is given for the scalar field theory (3.5.7a) by∫

ddx eip·x 〈T[φ(x)φ(0)]〉 = i

p2 −m2 + iε
+

i

p2 −m2 + iε

(
−iΣ(p2)

) i

p2 −m2 + iε
+ · · ·

=
i

p2 −m2 − Σ(p2) + iε
. (3.6.13)

Namely, the self-energy gives the shift of the mass parameter. A similar expression is also
possible for the Dirac field propagator.
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Chapter 4

Loop correction and renormalization

We have introduced the path integral formalism to quantize the field theories. In this Chapter,
we actually calculate the correlation functions and see how to deal with the diverging integrals
often appearing in the calculation. We then introduce the notion of the renormalization and
discuss its physical consequences.

4.1 Scalar field theory

We consider the scalar field theory to demonstrate how to calculate the correlation function.
The spinor field would be treated in a similar manner.

4.1.1 Two-point function

As discussed in (3.6.13), we need to evaluate the self-energy Σ to compute the connected two-
point function. At the one-loop order, we have a single contribution

−iΣ(p2) =
p

k

=
−iλ

2

∫
ddk

(2π)d
i

k2 −m2 + iε
. (4.1.1)

The factor 2 is due to the symmetry of the diagram. We remark that this expression does not
depend on the external momentum p, which is a specific feature of the one-loop diagram. In
general, the self-energy depends on the external momentum.

In order to evaluate this integral, we change the contour (3.2.23) as follows:

+Ek

−Ek
+Ek

−Ek (4.1.2)

This contour change corresponds to k0 → ik0, therefore k2 = k20 −~k2 → −k20 −~k2 =: −k2E, which
is the (minus of) norm with the Euclidean signature. This prescription is called the Wick
rotation. Hence, we obtain

Σ(p2) =
λ

2

∫
ddkE
(2π)d

1

k2E +m2
=
λ

2

∫ ∞

0
dk

Ωd−1

(2π)d
kd−1

k2 +m2
, (4.1.3)
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where ddkE = Ωd−1k
d−1 dk with Ωd the volume of d-sphere Sd of radius one.

Exercise 4.1 (Dimensional regularization).

1. Derive the volume of d-sphere Sd of radius one,

Ωd−1 =
2πd/2

Γ(d/2)
, (4.1.4)

so that

Ω1 = 2π , Ω2 = 4π , Ω3 = 2π2 , etc. (4.1.5)

Hint. One may derive it from the relation∫
Rd

ddx e−(x21+···+x2d)
2
=

∫
Rd

ddx e−r
2
= Ωd−1

∫ ∞

0
dr rd−1e−r

2 (4.1.6)

together with the Gaussian integral (3.2.3) and the integral formula of the gamma function

Γ(s) =

∫ ∞

0
dt ts−1e−t . (4.1.7)

2. Derive the formula∫ ∞

0
dk

kα

(k2 +∆2)β
=

∆α−2β+1

2

Γ(−α/2 + β − 1/2)Γ(α/2 + 1/2)

Γ(β)
. (4.1.8)

Hint. Use the variable x = ∆2/(k2 +∆2) ∈ [0, 1] and the beta integral formula

B(a, b) =

∫ 1

0
dxxa−1(1− x)b−1 =

Γ(a)Γ(b)

Γ(a+ b)
. (4.1.9)

3. Derive the one-loop expression of the self-energy,

Σ(p2) =
λ

2

md−2

(4π)d/2
Γ

(
1− d

2

)
. (4.1.10)

As discussed in Sec. 1.3.3, the mass dimension of the coupling constant is [λ] = 4 − d, so
that we shift λ → λµ4−d with [µ] = 1 in order that the coupling becomes dimensionless. Then,
the self-energy becomes

Σ(p2) =
λm2

2d+1πd/2

( µ
m

)4−d
Γ

(
1− d

2

)
. (4.1.11)

This parameter µ will play an important role in the discussion of renormalization group in
Sec. 4.3.

In fact, the gamma function Γ(z) has poles at −n ∈ Z≤0 with the residue

Res
z=−n

Γ(z) =
(−1)n

n!
, (4.1.12)

so that the self-energy diverges for even dimensions larger than two. This behavior is now
known to be an artifact of the dimensional regularization scheme, which only cares about the
logarithmic divergence [Lei75, BM77]. In order to see this behavior, we consider more intuitive
regularization with the parameter Λ, called the cutoff,

Σ(p2) = lim
Λ→∞

λ

2

∫ Λ

0
dk

Ωd−1

(2π)d
kd−1

k2 +m2
. (4.1.13)
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We remark that the cutoff in the momentum space may be written using the lattice spacing
discussed in Sec 1.3, Λ ≈ 2π/a. This cutoff regularization is more intuitive than the dimensional
regularization. However, it is not suitable for gauge theory since the dimensionfull parameter Λ

violates the gauge symmetry, and thus the dimensional regularization seems better in this case.

Exercise 4.2 (Cutoff regularization).

1. Verify the expression

Σ(p2; Λ) :=
λ

2

∫ Λ

0
dk

Ωd−1

(2π)d
kd−1

k2 +m2

t=k2/Λ2

=
λΛd

4m2

Ωd−1

(2π)d

∫ 1

0
dt td/2−1

(
1 +

Λ2

m2
t

)−1

.

(4.1.14)

2. Show

∫ 1

0
dt td/2−1(1 + at)−1 =


a−1 − a−2 log(1 + a) (d = 4)

2a−1 − 2a−3/2 tan−1(a1/2) (d = 3)

a−1 log(1 + a) (d = 2)

(4.1.15)

and evaluate the self-energy for d = 2, 3, 4.

3. Using the integral formula of the hypergeometric function

2F1

(
a, b
c
; z
)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− x)c−b−1(1− zt)−a

=

∞∑
n=0

(a)n(b)n
(1)n(c)n

zn , (x)n =

n−1∏
j=0

(x+ j) , (4.1.16)

for Re(c) > Re(b) > 0, show that the cutoff dependent self-energy for generic d is given by

Σ(p2; Λ) =
λ

2d

Λd

m2

Ωd−1

(2π)d
2F1

(
1, d/2

d/2 + 1
;−Λ2

m2

)
. (4.1.17)

4. The convergence radius of the expansion (4.1.16) is |z| < 1. Using (or deriving) the relation

2F1

(
a, b
c
; z
)
=

Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, 1 + a− c

1 + a− b
; z−1

)
+

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b2F1

(
b, 1 + b− c

1 + b− a
; z−1

)
, (4.1.18)

expand the self-energy with the parameter m2/Λ2 � 1 to show

Σ(p2; Λ) ≈ Λd−2 + lower terms . (4.1.19)

4.1.2 Four-point function

We consider the one-loop contribution to the four-point function:

p4p1

p2 p3

= + + + + · · ·

(4.1.20)
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The first one-loop diagram shows

k

p12 − k

=
(−iλ)2

2

∫
ddk

(2π)d
i

k2 −m2 + iε

i

(p12 − k)2 −m2 + iε

=
iλ2

2

∫
ddkE
(2π)d

1

k2E +m2

1

(p12 − k)2E +m2
=: iλ2V4(p

2
12) (4.1.21)

where we denote p12 = p1 + p2. Other diagrams are given by replacing p12 with p13 = p1 − p3

and p14 = p1 − p4, respectively. They are also denoted using the Mandelstam variables,

(p212, p
2
13, p

2
14) = (s, t, u) . (4.1.22)

Exercise 4.3 (Vertex function for the four-point function).

1. Show the following formulas:

(a) Schwinger parametrization

1

An
=

1

Γ(n)

∫ ∞

0
dt tn−1e−At (4.1.23)

(b) Feynman parametrization

1

AB
=

∫ 1

0
dx

1

(Ax+B(1− x))2
(4.1.24)

2. Verify the formula

V4(p
2; Λ) :=

1

2

∫
|kE|≤Λ

ddkE
(2π)d

1

k2E +m2

1

(p− k)2E +m2

=
1

2

∫ 1

0
dx

∫ Λ

0
ddkE

(
k2E +∆2

)−2 (
∆2 = m2 + x(1− x)p2

)
=

Λd

4

Ωd−1

(2π)d

∫ 1

0
dx∆−4

∫ 1

0
dt td/2−1

(
1 +

Λ2

∆2
t

)−2

, (4.1.25)

and

∫ 1

0
dt td/2−1(1 + at)−2 =


a−2 log(1 + a)− a−1(1 + a)−1 (d = 4)

a−3/2 tan−1(a1/2)− a−1(1 + a)−1 (d = 3)

(1 + a)−1 (d = 2)

(4.1.26)

Then, derive the vertex function V4(p
2; Λ) for d = 4,

V4(p
2; Λ) =

1

32π2

∫ 1

0
dx

[
log

(
1 +

Λ2

∆2

)
−
(
1 +

∆2

Λ2

)−1
]
, (d = 4) . (4.1.27)

Similarly derive the expression for d = 2, 3.

3. Show that the vertex function (4.1.21) is given by

V4(p
2) =

Γ(2− d/2)

2(4π)d/2

∫ 1

0
dx∆d−4 . (4.1.28)

Hint. Use the variable z = ∆2/(k2+∆2) ∈ [0, 1] and apply the beta integral formula (4.1.9).
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4. Using the infinite product formula of the gamma function

Γ(z)−1 = zeγz
∞∏
n=1

((
1 +

z

n

)
e−z/n

)
, (4.1.29)

with γ Euler’s constant, derive the expansion

Γ(z) =
1

z
− γ +O(z) . (4.1.30)

5. Let d = 4− ε. Then, verify the formula

V4(p
2) =

1

32π2

[
2

ε
− γ −

∫ 1

0
dx log

(
∆2

4π

)]
. (4.1.31)

4.2 Renormalization

We have seen various diverging behaviors of the loop integral. In order to provide a physical
prediction from them, we have to regularize such divergences. The renormalization is a sys-
tematic scheme to extract a physically meaningful quantities from the diverging integrals. As
seen in the previous computations, the mass and the coupling constant receive the quantum cor-
rection. Since we would observe the total quantities including all the corrections in experiments,
the bare mass and the bare coupling constant appearing in the original Lagrangian are formal
parameters, that would not be observed in the end. The idea of renormalization is to absorb
the infinities by unobserved quantities.

4.2.1 Counter terms

For the φ4 theory, we denote the bare and physical parameters by (m0, λ0) and (m,λ). We
similarly denote the bare field by φ0. Hence, the Lagrangian of this theory is given by

L =
1

2
∂µφ0∂

µφ0 −
1

2
m2

0φ
2
0 −

1

4!
λ0φ

4
0 . (4.2.1)

We rewrite this Lagrangian in terms of the physical parameters and the rescaled field,

φ0 = Z
1/2
φ φ , (4.2.2)

as follows:

L =
1

2
Zφ∂µφ∂

µφ− 1

2
m2

0Zφφ
2 − 1

4!
λ0Z

2
φφ

4

=
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4

+
1

2
δZφ

∂µφ∂
µφ− 1

2
δmφ

2 − 1

4!
δλφ

4 (4.2.3)

where the terms appearing in the third line are called the counter terms to absorb the infinities
with

δZφ
= Zφ − 1 , δm = m2

0Zφ −m2 , δλ = λ0Z
2
φ − λ . (4.2.4)

The physical mass is defined as the pole of the propagator, while there is no unique definition
of the physical coupling constant. A standard one for the latter case is to use the four-point
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function with the momenta pi = (m, 0, 0, 0) for i = 1, . . . , 4, equivalently s = 4m2, t = u = 0 in
the Mandelstam variables (4.1.22),

=
i

p2 −m2
+ regular terms , (4.2.5a)

= −iλ at (s, t, u) = (4m2, 0, 0) . (4.2.5b)

These give a renormalization condition for the mass and the coupling constant.

In addition to the propagator and the vertex (3.5.7), we introduce the Feynman diagrams
for the counter terms,

= i
(
p2δZφ

− δm
)

(4.2.6a)

= −iδλ (4.2.6b)

We demonstrate how to compute the two- and four-point functions with these diagrams in the
following.

4.2.2 Two-point function

As shown before, we need to evaluate the self-energy to compute the two-point function. By
definition of the physical mass, we obtain from (3.6.13) the renormalization condition,

Σ(p2)
∣∣∣
p2=m2

= 0 ,
dΣ(p2)

dp2

∣∣∣∣∣
p2=m2

= 0 . (4.2.7)

The one-loop contribution to the self-energy with the counter term is given by

−iΣ(p2) =
p

k

+
p

+ · · ·

=
−iλ

2

∫
ddk

(2π)d
i

k2 −m2 + iε
+ i(p2δZφ

− δm)

(4.1.10)
=

−iλ

2

md−2

(4π)d/2
Γ(1− d/2) + i(p2δZφ

− δm) . (4.2.8)

Since the first term does not depend on the momentum p2, we obtain

δZφ
= 0 , δm = −λ

2

md−2

(4π)d/2
Γ(1− d/2) . (4.2.9)

Namely, the divergence of the loop integral is cancelled by the counter term.
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4.2.3 Four-point function

We compute the four-point function at the one-loop level. In addition to the contributions (4.1.21),
we then have the counter term contribution (4.2.6b). The total contribution to the four-point
function at this level is given by

= −iλ+ iλ2
∑

x=s,t,u

V4(x)− iδλ + · · · . (4.2.10)

Putting (s, t, u) = (4m2, 0, 0), we obtain

δλ = λ2
[
V4(4m

2) + 2V4(0)
]
, (4.2.11)

which absorbs the divergence of the vertex function.

4.3 Renormalization group

We have imposed the renormalization condition with the physical mass (4.2.7). This is very
natural, but not unique way to subtract the divergences. In fact, since the condition (4.2.7)
becomes singular for the massless case m = 0, we should modify the condition. Hence, we now
impose another renormalization condition,

Σ(p2)
∣∣∣
p2=−µ2

= 0 ,
dΣ(p2)

dp2

∣∣∣∣∣
p2=−µ2

= 0 , (4.3.1)

where the parameter µ is called the renormalization scale. The reason why we put p2 =

−µ2 < 0 is to avoid the singularity appearing at p2 ≥ 4m2. We impose similarly to (4.2.5), but
more symmetric condition for the four-point function,

= −iλ at p2i = −µ2 , i = 1, . . . , 4 . (4.3.2)

Since the renormalization scale µ can be an arbitrary parameter, the bare correlation function
does not depend on it.

We consider the connected n-point function evaluated with the renormalized coupling λ,
which depends on µ. Recalling the scaling relation (4.2.2), we have the relation to the bare
correlation function,

Gn(x1, . . . , xn;λ, µ) := 〈T[φ(x1) · · ·φ(xn)]〉c = Z
−n/2
φ 〈T[φ0(x1) · · ·φ0(xn)]〉c,Λ . (4.3.3)

Since the bare correlation function contains infinities, we impose the cutoff Λ to regularize it.
Furthermore, the bare correlation function does not depend on µ, so that its dependence appears
only through Zφ on the right hand side. The independence of the bare correlation function on
the renormalization scale (namely, under fixing λ0 and Λ) gives rise to the renormalization
group (RG) equation[

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

]
Gn(x1, . . . , xn;λ, µ) = 0 (4.3.4)
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where we define the beta function and the anomalous dimension,

β(λ) = µ
∂λ

∂µ

∣∣∣∣∣
λ0,Λ

=
∂λ

∂ logµ

∣∣∣∣∣
λ0,Λ

, γ(λ) =
1

2
µ
∂ logZφ
∂µ

∣∣∣∣∣
λ0,Λ

=
1

2

∂ logZφ
∂ logµ

∣∣∣∣∣
λ0,Λ

. (4.3.5)

The beta function provides important information about the coupling constant, while the anoma-
lous dimension describes the deviation of the operator dimension from the classical value, which
is called the canonical dimension. In particular, at the zero of the beta function, β(λ∗) = 0,
the coupling does not depend on the renormalization scale µ, which implies that the theory
becomes scale invariant. Hence, the zero λ∗ is called the fixed point of the RG flow. Such a
scale invariant theory also exhibits conformal symmetry (in many cases), so that it is described
as conformal field theory (CFT). See (2.3.33).

Exercise 4.4. Verify that λ = 0 is a fixed point. (In particular, the beta function starts with
an O(λ2) term.)

Let us discuss several situations for the beta function. The first is the beta function mono-
tonically increasing/decreasing,

IR λ

β(λ)

UV

β > 0

UV λ

β(λ)

IR
β < 0

(4.3.6)

Since the renormalization scale µ characterizes the energy scale of the system, µ � 1 and
µ � 1 correspond to the ultraviolet (UV) and infrared (IR) regimes, respectively. Hence,
for β > 0, the IR fixed point theory is a free CFT. For β < 0, on the other hand, it becomes a
strongly/weakly coupled theory in the IR/UV regime, which is known as the asymptotic free.
Typical examples for the asymptotic free theory are non-Abelian gauge theory in d = 4 and
non-linear sigma model in d = 2.

If there is a fixed point at λ∗ 6= 0, it behaves as follows:

IR λ

β(λ)

IR

λ∗

UV UV λ

β(λ)

UV

λ∗

IR
(4.3.7)

Depending on the slop of the beta function at the fixed point, we obtain non-trivial CFTs in the
UV/IR limit.
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Chapter 5

Quantization of non-Abelian gauge
theory

In Sec. 2.6.4, we have introduced the vector field transforming under the simple Lie group G.
In this Chapter, we discuss how to quantize G-gauge theory based on path integral formalism.

5.1 Gauge fixing

We consider the path integral quantization of the gauge theory with the YM Lagrangian (2.6.42),∫
DA exp

[
i

∫
dxLYM(A)

]
. (5.1.1)

This naively defined path integral is problematic in the following sense: As discussed in Sec. 2.6.4,
the YM Lagrangian is invariant under the gauge transformation (2.6.31). Hence, the path
integral measure DA over counts the configuration, and we should instead consider that for the
conjugacy class DAc = DA/DU , where DU is a product of the Haar measure over G at each
spacetime point x. In order to deal with this issue, we may use the gauge fixing trick: We
restrict the gauge field configuration to that satisfies the gauge fixing condition, e.g., Coulomb
gauge ∇ ·Aa = 0, Lorentz gauge ∂µAaµ = 0.

Exercise 5.1.

1. Verify that∫
dx δ(f(x)− c) =

∫
df

f ′
δ(f − c) =

1

f ′(x∗)
s.t. f(x∗) = c . (5.1.2)

2. Show the n-dimensional generalization,∫
dnx δ(n)

(
~f(~x)− ~c

)
= det

1≤i,j≤n

(
∂fi(~x∗)

∂xj

)−1

s.t. ~f(~x∗) = ~c . (5.1.3)

We consider the functional generalization of these formulas,

1 =

∫
Dθ δ(f(A)) det

(
δf(A)

δθ

)
(5.1.4)
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where θ = (θa)a=1,...,dimG parametrizes the group element U ∈ G as in (2.6.32), and Dθ is essen-
tially the Haar measure DU in the θ-coordinate. We set f(A) = ∂µAaµ − fa, which imposes the
generalized Lorentz gauge, ∂µAaµ = fa. From the infinitesimal gauge transformation (2.6.38b)
in the vicinity of the configuration f(A) = 0, we obtain

det

(
δf(A)

δθ

)
= det (∂µDµ) , (5.1.5)

which is called the Faddeev–Popov (FP) determinant. We remark that this functional
determinant is evaluated with the gauge field configuration satisfying the gauge fixing condition
f(A) = 0.

Inserting the identity (5.1.4), we obtain the gauge theory path integral,

Z =

∫
DAcDθ e

iSYM[A]δ(f(A)) det (∂µDµ) =

∫
DA eiSYM[A]δ(f(A)) det (∂µDµ) . (5.1.6)

Here it does not depend on the parameter fa. Then, we further insert the following identity
operator to care about the delta function factor,

1 =

∫
Df exp

[
i

∫
dx

(
− 1

2ξ
fa(x)fa(x)

)]
, (5.1.7)

such that

Z =

∫
DADf δ

(
∂µAaµ − fa

)
det (∂µDµ) exp

[
i

∫
dx

(
LYM(A)− 1

2ξ
fa(x)fa(x)

)]
=

∫
DA det (∂µDµ) exp

[
i

∫
dx

(
LYM(A)− 1

2ξ
(∂µAµ(x))

2

)]
. (5.1.8)

Such a prescription by adding the gauge symmetry breaking term to fix the gauge degrees of
freedom is called the method of Rξ gauge. In particular, the case with ξ = 1 is called the
Feynman gauge, and ξ = 0 is called the Landau gauge. Furthermore, there is another equivalent
description without explicitly introducing the gauge breaking term. Using a modification of the
identity (5.1.7),

1 =

∫
DBDf exp

[
i

∫
dx

(
Ba(x)fa +

ξ

2
Ba(x)Ba(x)

)]
, (5.1.9)

the path integral becomes

Z =

∫
DADB det (∂µDµ) exp

[
i

∫
dx

(
LYM(A) +Ba∂µAaµ +

ξ

2
BaBa

)]
. (5.1.10)

The auxiliary field Ba introduced here is called the Nakanishi–Lautrup field. The remaining
part to be managed is the FP determinant in the path integral. Using the functional analog of
the Gaussian integral of the Grassmann variables (3.3.7), we may write it as follows,

det (∂µDµ) =

∫
DcDc̄ exp

[
i

∫
dx (ic̄a∂µDµc

a(x))

]
. (5.1.11)

These Grassmann scalar fields, ca and c̄a, are called the FP ghosts, which in fact violate the
spin-statistics theorem (spin-0 fermionic fields), and therefore it may violate the unitarity as
well. Combining all these contributions, the path integral is now written in the following form,

Z =

∫
DADBDcDc̄ exp

[
i

∫
dxLtot(A,B, c, c̄)

]
(5.1.12)

52



where

Ltot(A,B, c, c̄) = LYM(A) + LGF(A,B) + LFP(A, c, c̄) , (5.1.13a)

LGF(A,B) = Ba∂µAaµ +
ξ

2
BaBa , (5.1.13b)

LFP(A, c, c̄) = ic̄a∂µDµc
a(x) = −i∂µc̄aDµc

a(x) . (5.1.13c)

Since there is no derivative term for the auxiliary field, the equation of motion simply yields,

∂LGF
∂Ba

= ∂µAaµ + ξBa =⇒ Ba = −ξ−1∂µAaµ

=⇒ LGF

∣∣∣
on-shell

= − 1

2ξ

(
∂µAaµ

)2
, (5.1.14)

which reproduces the expression (5.1.8).

5.2 BRST formalism

Apparently, there is no gauge symmetry after gauge fixing. However, instead of the local gauge
symmetry, one can instead discuss the global symmetry, called the BRST symmetry, which
is interpreted as a remnant of the original gauge symmetry.

5.2.1 BRST transforms

We replace the local gauge transform parameter with the ghost field:

θa(x) −→ εca(x) . (5.2.1)

Since ca(x) is a fermionic field, the transformation parameter ε must be also a Grassmann
variable. Then, we define the BRST transformations by replacing the gauge transforma-
tions (2.6.38) as follows:1

δBφi(x) = igca(x)(ta)jiφj(x) , (5.2.2a)

δBA
a
µ(x) =

(
∂µc

a(x)− gfabcA
b
µ(x)c

c(x)
)
= Dµc

a(x) (5.2.2b)

where we shift θa(x) → gθa(x) from the convention of (2.6.38), and we call δB the BRST
operator. Let C(x) = ca(x)ta. Then, we instead have the matrix version of the transformations,

δBφ(x) = igC(x)φ(x) , (5.2.3a)

δBAµ(x) = ∂µC(x) + ig[Aµ(x), C(x)] . (5.2.3b)

Since δB is now a fermionic operator, it must be nilpotent when it acts on the fields,

δ2B = 0 . (5.2.4)

This property determines the transformation rule of the ghost field ca(x).
1In fact, δB is a spin-0 fermionic operator, which transforms physical fields (φ,Aµ) to ghost fields ca. If we in-

stead introduce a spin- 1
2

fermionic operator, it transforms physical bosonic fields to physical fermionic fields (ψ, ψ̄),
and vice versa. Such a symmetry between physical bosonic and fermionic fields is called the supersymmetry.
See, for example, [WB92, Wei95] for details.
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Exercise 5.2 (The BRST transform of the ghost field ca(x)).

1. Verify that

δ2Bφ(x) = ig[(δBC(x))φ(x)− C(x)(igC(x)φ(x))] . (5.2.5)

2. Then, show that the ghost field transforms as follows:

δBC(x) = igC(x)C(x) . (5.2.6)

3. Derive that for the component,

δBc
a(x) = −g

2
f a
bd cb(x)cd(x) . (5.2.7)

4. Verify the nilpotency on the gauge and ghost fields,

δ2BAµ = 0 , δ2BC(x) = 0 . (5.2.8)

In addition, the anti-ghost field behaves under the BRST operator as follows:

δBc̄
a(x) = iBa , (5.2.9a)

δBB
a(x) = 0 , (5.2.9b)

which yields δ2B = 0 again.

5.2.2 BRST charge

Since the BRST symmetry is a global symmetry of the system, we can apply Noether’s theorm
to construct the conserved charge as discussed in Sec. 2.3.2.

Exercise 5.3 (Noether current for the BRST symmetry). Applying the formula shown in
Sec. 2.3.2, derive the Noether current associated with the BRST symmetry, that we call the
BRST current,

εJµB =
∂L

∂(∂µAaν)
εDνca +

∂L

∂(∂µca)

(
−1

2
εgf a

bd cbcd
)
+

∂L

∂(∂µc̄a)
iεBa

= ε

[
BaDµca − (∂µBa)ca +

i

2
gf a
bc (∂µc̄a)cbcd − ∂µ(F aµνc

a)

]
. (5.2.10)

We remark that the BRST current JµB itself is fermionic, so that the combination εJµB is bosonic.

Using the BRST current, we define the BRST charge

QB =

∫
dDxJ0

B , (5.2.11)

which generats the BRST transformation,

[iεQB, ϕ(x)] = εδBϕ(x) . (5.2.12)
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5.2.3 BRST cohomology

In the Lagrangian (5.1.13), the ghost and anti-ghost appear as a pair, so that it is invariant
under the following transformation,

(ca, c̄a) −→
(
erca, e−r c̄a

)
. (5.2.13)

Since they are real fields, this is not a phase rotation, but a scale transformation (non-compact
U(1) symmetry).

Exercise 5.4 (FP ghost charge).

1. Applying the discussion in Sec. 2.3.2, derive the Noether current associated with the scale
transformation (5.2.13),

Jµc = i(c̄aDµca − (∂µc̄a)ca) . (5.2.14)

2. Show that the FP ghost charge defined

Qc =

∫
dDxJ0

c = i

∫
dDx

(
c̄aD0ca −

(
∂0c̄a

)
ca
)
, (5.2.15)

generates the scale transformation (5.2.13),

[iQc, c
a(x)] = ca(x) , [iQc, c̄

a(x)] = −c̄a(x) . (5.2.16)

We may assign the ghost number to each field,

Ghost number 0 +1 −1

Fields φ, Aaµ, B
a ca, δB c̄a

(5.2.17)

In fact, the ghost number operator is given by the FP ghost charge, Nc := iQc. Due to the

nilpotency of the BRST operator, we define the BRST complex,2

· · · C−1 C0 C1 · · ·QB QB QB QB (5.2.20)

where Cp denotes the sector with the ghost number p. Then, we define the BRST cohomology

HB = kerQB/ imQB , (5.2.21)

where kerQB and imQB are given by

QB |ψ〉 = 0 , |ψ〉 ∈ kerQB , (5.2.22a)

|ψ〉 = QB
∣∣ψ′〉 , |ψ〉 ∈ imQB . (5.2.22b)

2We can also introduce the anti-BRST operator having ghost number −1 and mapping from Cp to Cp−1 as
follows:

QB = CFP QB C−1
FP , (5.2.18)

where we denote the FP conjugation operator by CFP,

CFP : ca −→ c̄a , c̄a −→ −ca , Ba −→ −Ba
. (5.2.19)
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Apparently, imQB ⊂ kerQB. This is why one may consider their quotient to define the coho-
mology. We remark that any state in imQB written as |ψ〉 = QB |ψ′〉 has zero norm,

〈ψ|ψ〉 = 〈ψ|QB
∣∣ψ′〉 = 0 . (5.2.23)

This is an important property that ensures that unphysical states and the ghosts are not phys-
ically observed in the BRST formalism [KO79].

5.2.4 Lagrangian in the BRST formalism

Let F a(φ,Aµ, B, c, c̄) be an arbitrary function of the fields with ghost number zero. Then, we
add the following term to the Lagrangian

LGF+FP = −iδB(c̄
aF a) . (5.2.24)

From the nilpotency of the operator δ2B = 0, we see that it is BRST invariant,

δBLGF+FP = −iδ2B(c̄
aF a) = 0 . (5.2.25)

Recalling the original YM Lagrangian is gauge invariant, the total Lagrangian Ltot is also BRST
invariant, δBLtot = 0. Therefore, although the original gauge symmetry is broken due to the
additional term LGF+FP, the current system instead has the BRST symmetry.

Exercise 5.5 (Gauge fixing and FP terms).

1. Show that, if F a does not contain the ghost and anti-ghost fields, it gives

LGF+FP = BaF a + ic̄a(δBF a) =: LGF + LFP . (5.2.26)

2. Put

F a = ∂µAaµ +
ξ

2
Ba . (5.2.27)

Then, verify that it reproduces the Lagrangian (5.1.13).

If F a contains the ghost fields, there will be non-linear terms of ca and c̄a in the Lagrangian
LGF+FP, so that we cannot integrate out the ghosts to obtain the FP determinant. In this
sense, the BRST formalism is a genaralization of the FP gauge fixing formalism.

5.2.5 Feynman rule

Based on the BRST formalism discussed above, let us consider the Feynman rule to deal with
the petrurbative computation of the amplitudes. In addition to the Lagrangian (5.1.13), we also
take into account the Dirac field coupled with the gauge field,

LDirac = ψ̄[γµ(i∂µ + gAµ)−m]ψ = ψ̄[iγµDµ −m]ψ , (5.2.28)

where Dµ = ∂µ − igAµ is the covariant derivative acting on a field in the fundamental represen-
tation of G.

Exercise 5.6.
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1. Verify that the quadratic (free) part of the Lagrangian is given by

L0 =
1

2
Aaµ

[
gµν∂ρ∂

ρ −
(
1− 1

ξ

)
∂µ∂ν

]
Aaν + ψ̄(iγµ∂µ −m)ψ + c̄ai∂µ∂µc

a (5.2.29)

where the gauge fixing parameter ξ is interpreted as the renormalized one.

2. From the YM Lagrangian (2.6.42), derive the self-interaction terms of the gauge fields,

L3-gauge = −g
2
f a
bc

(
∂µA

a
ν − ∂νA

a
µ

)
AbµAcν , (5.2.30a)

L4-gauge = −g
2

4
f a
bc f

a
deA

b
µA

c
νA

dµAeν . (5.2.30b)

3. Derive the gauge-Dirac and gauge-ghost interaction terms,

Lgauge-Dirac = gψ̄iγµA
aµ(ta) ji ψj , (5.2.31a)

Lgauge-ghost = −igfabcc̄
a∂µAbµc

c = igfabc(∂
µc̄a)Abµc

c . (5.2.31b)

From these expressions, we obtain the following Feynman rules for the propagators,

Gauge propagator: Aaµ Abν
=

iδab

p2 + iε

[
gµν − (1− ξ)

pµpν
p2

]
(5.2.32a)

Dirac propagator: ψ̄ p ψ =
i(/p+m)

p2 −m2 + iε
(5.2.32b)

Ghost propagator: c̄b p ca =
iδab

i(p2 + iε)
(5.2.32c)

and for the vertices,

Dirac-gauge vertex:
ψj

ψ̄i
Aaµ = igγµ(t

a) ji (5.2.33a)

Ghost-gauge vertex:
cb

c̄c

Aaµ = igf a
bc pµ (5.2.33b)

3-gauge:

Aaµ, k

Abν , p

Acρ, q = −gfabc[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] (5.2.33c)

4-gauge:

AaµAbν

Acρ Adσ

= −igfabefcde(gµρgνσ − gµσgνρ)

− igfacefbde(gµνgρσ − gµσgρν)

− igfadefbce(gµνgσρ − gµρgσν) (5.2.33d)
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Chapter 6

Spontaneous symmetry breaking

Let E(p) be the spectrum of the system with momentum p. The system with E(p = 0) = 0 is
called gapless, while it is called gapped if E(p = 0) 6= 0. For example, the spectrum of the free
scalar field is given by E(p) =

√
p2 +m2, so that it is gapped unless m = 0. In fact, (almost) all

the gapless systems are associated with the spontaneous symmetry breaking (SSB), which
is one of the most important concepts in QFT.

6.1 Nambu–Goldstone’s theorem

Suppose that Q is the conserved (Noether) charge associated with the continuous symmetry
introduced in Sec. 2.3.2. We denote the vacuum/ground state by |0〉. Then, there are two
possibilities,

(i) Q |0〉 = 0 , (ii) Q |0〉 6= 0 . (6.1.1)

Since Q is the generator of the symmetry transformation, |0〉 is invariant under it in the case (i),
while it is not invariant in the case (ii). The case (ii) actually shows the SSB: the vacuum state
violates the symmetry of the Lagrangian.

Recalling the definition of the conserved charge (2.3.8), defined as the spatial integral, its
norm 〈0|QQ |0〉 shall be proportional to the spatial volume V , if it exists. Since it diverges
in the thermodynamic limit V → ∞, the case (ii) would be ill-defined (its normalization is
indeterminate). Hence, we instead consider the local version of the case (ii) as follows,

(ii’) 〈δϕ〉 := 〈0| δϕ(x) |0〉 (2.3.11)
= 〈0| [iQ,ϕ(x)] |0〉 6= 0 . (6.1.2)

The vacuum expectation value (vev) of the local field operator δϕ denoted by 〈δϕ〉 is called the
order parameter.

Suppose that the field operator transforms in the representation R of the symmetry group G,
δϕi = i(ta)ijϕj , where (ta)a=1,...,dimG is a set of the generators of G, and denote the associated
conserved charge by Qa. Consider the potential for ϕ(x) denoted by V (ϕ),1 which is invariant
under the infinitesimal transformation,

0 = V (ϕ+ εδϕ)− V (ϕ) = iε
∂V (ϕ)

∂ϕj
(ta)jkϕk +O(ε2) . (6.1.3)

1This potential should be understood as the effective action discussed in Sec. 3.6.
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Taking the derivative with ϕi again, we have

∂2V (ϕ)

∂ϕi∂ϕj
(ta)jkϕk +

∂V (ϕ)

∂ϕj
(ta)jkδik = 0 . (6.1.4)

We denote the vev of the field by ϕ̄ = 〈ϕ〉, which obeys ∂V/∂ϕ|ϕ=ϕ̄ = 0. Then, we obtain

Mij(t
a)jkϕ̄k = 0 ⇐⇒ Mij 〈δϕj〉 = 0 , (6.1.5)

where we define the mass matrix,

Mij =
∂2V (ϕ)

∂ϕi∂ϕj

∣∣∣∣∣
ϕ=ϕ̄

. (6.1.6)

Namely, the order parameter turns out to be the zero mode (eigenvector of the zero eigenvalue)
associated with the mass matrix if it is nonzero. Let H be a subgroup of G, s.t.,

〈δϕ〉 = 〈i(ta)ϕ〉

6= 0 (ta ∈ LieG/H)

= 0 (ta ∈ LieH)
(6.1.7)

This shows that the symmetry is broken from G to H, and the field transforming under the
quotient G/H behaves as the zero mode, called the Nambu–Goldstone (NG) mode. We
denote the number of broken symmetries by NBS = dimG/H = dimG − dimH. Then, the
Nambu–Goldstone’s theorem claims that it agrees with the number of the NG modes in the
relativistic (Lorentz symmetric) system,

NNG = NBS . (6.1.8)

If there is no Lorentz symmetry, this equality does not hold in general, NNG ≤ NBS. See, for
example, [Wat19] for details in this case.

Complex scalar field

We consider the complex scalar field discussed in Sec 2.4.2 as a primary example which shows
the SSB of the global symmetry. The Lagrangian is given in (2.4.5). Due to the U(1) symmetry
(2.4.6), the potential only depends on the absolute value of the field,

V (|φ|) = m2|φ|2 + λ

2
|φ|4 . (6.1.9)

We assume λ > 0 for the finiteness of the action. Then, there are two possibilities depending on
the mass parameter:

|φ|

V (|φ|)

(a) m2 > 0

|φ|

V (|φ|)

(b) m2 < 0

(6.1.10)
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The vacuum is given by the stationary point of the potential, ∂V (|φ|)/∂φ = 0. In the case (a),
φ = 0 is the unique solution. On the other hand, in the case (b),2 there are two stationary points,
|φ| = 0 and

√
−m2/λ =: v/

√
2. As seen in the potential, the former one seems unstable against

the fluctuation. In fact, the negative squared mass (imaginary mass) indicates instability of the
vacuum, which is called the tachyon. Any points on the circle |φ| =

√
−m2/λ are equivalent,

but once specifying the phase of the field, the U(1) symmetry is spontaneously broken in the
vacuum.

We take φ = v/
√
2 as a vacuum configuration, and we expand the field around this vacuum,

φ(x) =
1√
2

(
v + φ‖(x) + iφ⊥(x)

)
. (6.1.11)

The real fields, φ‖(x) and φ⊥(x), describe the fluctuations along the parallel (real) and perpen-
dicular (imaginary) directions as follows:

Reφ

Imφ

V (φ)

φ⊥

φ‖

(6.1.12)

Exercise 6.1. Plugging in the expansion (6.1.11), derive the Lagrangian for the fields (φ‖(x), φ⊥(x)),

L (φ‖, φ⊥) =
1

2

(
∂µφ‖

)2 − 1

2
m̃2φ2‖ +

1

2
(∂µφ⊥)

2

− m̃
√
λφ‖

(
φ2‖ + φ2⊥

)
− λ

8

(
φ2‖ + φ2⊥

)2
− V (v/

√
2) , (6.1.13)

where m̃2 = −2m2 > 0.

This shows that φ‖ has the positive squared mass, while φ⊥ is a massless field, which is
identified with the NG mode associated with the SSB of the global U(1) symmetry.

6.2 Higgs mechanism

So far, we have discussed the spontaneous breaking of global symmetry. One can similarly
consider it in the system with the local gauge symmetry.3 In that case, the NG mode can be
coupled with the gauge field and giving a mass. Such a mechanism to generate the massive
gauge field is called the Higgs mechanism.

2The complex scalar field model with m2 < 0 is called the Goldstone model, which shows the spontaneous
breaking of the global U(1) symmetry as shown below.

3This is not the spontaneous breaking of local gauge symmetry. It is known as Elitzur’s theorem that local
gauge symmetries cannot be spontaneously broken.
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6.2.1 Abelian Higgs model

We consider the complex scalar theory coupled with U(1) gauge field,

L (φ,Aµ) = −1

4
FµνF

µν + |Dµφ(x)|2 − V (|φ|) (6.2.1)

where the potential V (|φ|) is given by (6.1.9). See Sec. 2.6 for the definition of the covariant
derivative and the Maxwell term. This model is called the Abelian Higgs model and also the
scalar QED.

We now consider the case (b) of the potential V (|φ|) with µ2 = −m2 > 0. Then, we have the
same vev of the scalar field as before, φ = v/

√
2 =

√
µ2/λ. We again expand the field around

this configuration, but with a slightly different parametrization,

φ(x) =
1√
2
(v + σ(x))e−iπ(x) . (6.2.2)

Roughly speaking, they correspond to the previous parametrization as (σ, π) ∼ (φ‖, φ⊥). Then,
applying the gauge transformation (2.6.1), φ(x) → eiπ(x)φ(x) = (v + σ(x))/

√
2, the field π(x)

does not appear in the Lagrangian any longer. This gauge choice is called the unitary gauge.

Exercise 6.2. Plug in the expression of the scalar field, φ(x) = (v + σ(x))/
√
2, obtain the

Lagrangian in terms of the new scalar field σ(x) and the gauge field Aµ,

L (σ,Aµ) = Lgauge(Aµ) + Lσ(σ) + Lint(σ,Aµ)− V (v/
√
2) , (6.2.3a)

Lgauge(Aµ) = −1

4
FµνF

µν +
(ev)2

2
AµA

µ , (6.2.3b)

Lσ(σ) =
1

2
(∂µσ(x))

2 − 1

2
m̃2σ2 − λv

2
σ3 − λ

8
σ4 , (6.2.3c)

Lint(σ,Aµ) = e2
(
vσ +

1

2
σ2
)
, (6.2.3d)

where m̃2 = −2m2 = 2µ2 > 0 as before.

In this expression, we find the mass term for the gauge field, AµAµ, which breaks the gauge
symmetry. In addition, in contrast to the Goldstone model, there is no gapless NG mode, but
only a massive scalar field σ(x). In fact, originally the scalar field π(x) is supposed to play a role
of the NG mode, which is then absorbed by the gauge field via the U(1) transformation (2.6.4),
Aµ → Aµ + e−1∂µπ(x).

The vector field has spin 1, which involves three states labeled by the angular momentum in
the going direction, (+1, 0,−1), called the helicity. The massless vector field, e.g., the photon,
is fully polarized (transverse modes only), so that its helicity must be ±1. Now, the scalar field
π(x) is absorbed by the gauge field as a longitudinal mode (zero helicity) to give a mass for
it. This mechanism to generate a mass for the gauge field is called the Higgs mechanism. In
general, the mass for the gauge field is proportional to the vev of the scalar field.

6.2.2 Higgs–Kibble model

Let us consider the system with non-Abelian gauge symmetry and the corresponding spontaneous
breaking with G = SU(2). Then, the generators are given by the Pauli matrices, (ta)a=1,2,3 =
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(σa/2)a=1,2,3, and the structure constant is given by the anti-symmetric tensor, fabc = εabc. We
use the vector notation for the SU(2) structure

Aµ = ~Aµ · ~t =
3∑

a=1

Aaµ t
a ,

(
~X × ~Y

)a
= εabcXbYc ,

∣∣∣ ~X∣∣∣2 = 3∑
a=1

XaXa . (6.2.4)

In this convention, the field strength is written as

~Fµν = ∂µ ~Aν − ∂ν ~Aµ + g ~Aµ × ~Aν , (6.2.5)

with the coupling constant g. The Higgs field forms an SU(2) doublet (2-representation),

Φ = (φ1 φ2)
T , (6.2.6)

and its covariant derivative is given by

DµΦ =
(
∂µ − ig ~Aµ · ~t

)
Φ . (6.2.7)

Then, we define the SU(2) Higgs–Kibble model,

L = −1

4
~Fµν · ~Fµν + (DµΦ)

†(DµΦ) + µ2Φ†Φ− λ

2

(
Φ†Φ

)2
. (6.2.8)

The vacuum structure of this model is quite similar to the Abelian case (6.2.1): The vacuum
configuration is given by Φ = (0 v/

√
2)T with v =

√
2µ2/λ.

Exercise 6.3. Expanding the Higgs field around the vacuum,

Φ(x) =
1√
2

(
v + φ‖(x) + i~φ⊥ · ~t

)(0
1

)
=

1√
2

(
φ2⊥(x) + iφ1⊥(x)

v + φ‖(x)− iφ3⊥(x)

)
, (6.2.9)

and plugging in this expression to the Lagrangian, show that it is written as

L = −1

4
~Fµν · ~Fµν +

1

2
M2
∣∣∣ ~Aµ −M−1∂µ~φ⊥

∣∣∣2 + 1

2

(
∂µφ‖

)2 − 1

2
m̃2φ2‖

+
g

2
~Aµ ·

(
~φ⊥∂

µφ‖ − φ‖∂
µ~φ⊥ + ~φ⊥ × ∂µ~φ⊥

)
+
g

2
M ~Aµ · ~Aµ +

g2

8
~Aµ · ~Aµ

(
φ2‖ +

∣∣∣~φ⊥∣∣∣2)
− 1

2
m̃
√
λφ‖

(
φ2‖ +

∣∣∣~φ⊥∣∣∣2)− λ

8

(
φ2‖ +

∣∣∣~φ⊥∣∣∣2)2

− V (v/
√
2) (6.2.10)

where M = gv/2 and m̃2 = 2µ2 > 0.

Precisely speaking, since this is non-Abelian gauge theory, we should take care of the gauge
fixing with the FP ghosts. Up to this point, the kinetic term of the perpendicular mode is
removed by the gauge transformation (unitary gauge), and the gauge field becomes massive
similarly to the Abelian model.

6.2.3 Weinberg–Salam model

It has been established that the weak interaction is described by SU(2)W gauge theory. It has
been known that only the left-handed leptons transform under SU(2)W, and thus the right-
handed component is a singlet under it. We denote the electron and the corresponding neutrino
(electron neutrino) by e and νe. Then, the left- and right-handed fields are given by (See (2.5.9))

Le :=

(
νe

e

)
L

=
1− γ5

2

(
νe

e

)
, Re := eR =

1 + γ5
2

e . (6.2.11)
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We have two more similar pairs for the muon (µ, νµ) and the tau particle (τ, ντ ), known as the
three generation structure. Denote the generators of SU(2)W by (T a)a=1,2,3. Since the left-
handed lepton transforms as a doublet, the corresponding “spin” called the weak isospin is given
by 1

2 . νe and e correspond to T 3 = ±1
2 .

The neutrinos are, as their names indicate, charge neutral particles described as left-handed
Weyl spinors. On the other hand, the electron has charge −1 (same for µ and τ). Since the
doublet does not have the same electric charge, SU(2)W should be mixed up with electromagnetic
U(1)EM. In order to describe this situation, we introduce the additional U(1)Y symmetry, and
call the corresponding charge the weak hypercharge Y . Then, the electric charge is given by the
following combination,

Q = T 3 + Y . (6.2.12)

Assigning Y = −1
2 and −1 for Le and Re, this explains the electric charges of νe and e are 0

and −1. Since the photon (electromagnetic gauge field) is the unique massless gauge field, the
remaining symmetries must be spontaneously broken,

SU(2)W ×U(1)Y −→ U(1)EM . (6.2.13)

This is known as the unification of the electromagnetism and the weak interaction.

We consider the Weinberg–Salam model, which shows the symmetry beaking of the form
of (6.2.13). We denote the U(1)Y , SU(2)W, and U(1)EM gauge fields by Bµ, ~Aµ, and Aµ. Their
gauge couplings are g′ and g. Then, the Lagrangian is given as follows,

L = Lgauge + LHiggs + Llepton , (6.2.14a)

Lgauge = −1

4

∣∣∣∂µ ~Aν − ∂ν ~Aµ + g ~Aµ × ~Aν

∣∣∣2 − 1

4
(∂µBν − ∂νBµ)

2 , (6.2.14b)

LHiggs = (DµΦ)
†(DµΦ) + µ2Φ†Φ− λ

2

(
Φ†Φ

)2
, (6.2.14c)

Llepton = Leiγ
µDµLe +Reiγ

µDµRe − fe

[(
LeΦ

)
Re +Re

(
Φ†Le

)]
(6.2.14d)

where fe is the Yukawa coupling constant, and the covariant derivative is given by

Dµ =

∂µ − ig′Y Bµ − ig ~Aµ · ~t (Le, Φ)

∂µ − ig′Y Bµ (Re)
. (6.2.15)

Since the Higgs sector is the same as the Kibble–Higgs model (6.2.8), we have the same vev
for the Higgs field, Φ =

(
0 v/

√
2
)T. We assign Y = +1

2 to the Higgs field so that the lower
component has Q = 0, which is required to preserve the U(1)EM symmetry.

Exercise 6.4.

1. Show that the mass term for the gauge field is obtained from the covariant derivative of
the Higgs field,∣∣∣∣∣− i

2

(
g′Bµ + gA3

µ gA1
µ − igA2

µ

gA1
µ + igA2

µ g′Bµ − gA3
µ

)(
0

v/
√
2

)∣∣∣∣∣
2

=M2
WW

†
µW

µ +
1

2
M2
ZZµZ

µ (6.2.16)
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where we define

Wµ =
1√
2
(A1

µ − iA2
µ) , (6.2.17a)

Zµ =
1√

g2 + g′2

(
gA3

µ − g′Bµ
)
, (6.2.17b)

Aµ =
1√

g2 + g′2

(
gA3

µ + g′Bµ
)
, (6.2.17c)

and the mass parameters are

M2
W =

1

4
g2v2 , M2

Z =
1

4
(g2 + g′2)v2 . (6.2.18)

Verify that there is no mass term for the gauge field Aµ. The electric charges of W , W †,
Z, A are given by Q = +1,−1, 0, 0. The charged and neutral vector fields are called the W
boson and Z boson.

2. Define θW, called the Weinberg angle, s.t.,(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
A3
µ

Bµ

)
. (6.2.19)

Namely, tan θW = g′/g. Then, show that

M2
Z =

M2
W

cos θW
. (6.2.20)

3. Show that the mass term for the lepton is obtained from the Yukawa interaction with
non-zero vev of the Higgs field,

−fe
[(
LeΦ

)
Re +Re

(
Φ†Le

)]
= −fe

v√
2
ēe =: me ēe . (6.2.21)
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charge conjugation, 21
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connection, 24
Coulomb gauge, 51
counter term, 47
covariant derivative, 22
cumulant, see connected part
curvature, 24

Ricci—, 29
Riemann–, 29

cutoff, 44

differential form, 24
dimensional regularization, 44
Dirac equation, 20
Dirac operator, 35

effective action, 40
Elitzur’s theorem, 60

energy-momentum tensor, 12
Euler’s constant, 47
Euler–Lagrange equation, 11

Faddeev–Popov (FP)
—determinant, 52
—ghost, 52
—ghost charge, 55

Feynman gauge, 52
Feynman parametrization, 46
Feynman rule, 38
field strength, 23
fixed point, 50

gamma function, 44, 47
gapless, 58
gapped, 58
gauge fixing, 51
Gaussian integral, 31

—for Grassmann numbers, 35
generalized global symmetry, 14
generating functional, 30
ghost number, 55
global transformation, 22
Goldstone model, 60
Grassmann number, 21
Green’s function, 33

Hafnian, 33
Heisenberg picture, 36
helicity, 61
Higgs mechanism, 60, 61
Higgs–Kibble model, 62
hypergeometric function, 45

infrared (IR), 50
interaction picture, 36
irrelevant operator, 3

Klein–Gordon equation, 16
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Landau gauge, 52
local transformation, 22
Lorentz gauge, 51

generalized—, 52

Majorana spinor, 21
Mandelstam variable, 46
marginal operator, 3
Maurer–Cartan form, 16, 26
Maxwell Lagrangian, 23

Nakanishi–Lautrup field, 52
Nambu–Goldstone (NG) mode, 59
Nambu–Goldstone’s theorem, 59
Nambu–Jona-Lasinio model, 20
nilpotent, 53
Noether

—charge, 12
—current, 11

Noether’s theorem, 11

order parameter, 58

partition function, 30
Pfaffian, 35
Poincaré group, 12

Rξ gauge, 52
relevant operator, 3
renormalization, 4, 47

—condition, 48, 49
—scale, 49

renormalization group equation, 49

scalar QED, see Abelian Higgs model
Schwinger parametrization, 46
self-energy, 41
selfdual tensor, 10, 25
spin, 8
spin connection, 28
spin group, 7, 15
spin-statistics theorem, 8
spontaneous symmetry breaking (SSB), 20, 58
supersymmetry, 53

time-ordering product, 30
torsion, 29

ultraviolet (UV), 50
unitarian trick, 9

vacuum expectation value (vev), 58
vielbein, 28
Virasoro algebra, 15

W boson, 64
weak hypercharge, 63
weak interaction, 62
weak isospin, 63
Weinberg angle, 64
Weinberg–Salam model, 63
Weyl equation, 20
Wick rotation, 43
Wick’s theorem, 34

—for spinors, 36

Yang–Mills (YM) Lagrangian, 26
Yukawa interaction, 20, 39, 63

Z boson, 64
zeta function regularization, 33
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